Complementarity and the analog/digital distinction
Tipo de documento
Lista de autores
Otte, Michael Friedrich y Barros, Luiz Gonzaga Xavier de
Resumen
Niels Bohr, as is well known, introduced the notion of complementarity into physics, as a fundamental principle of quantum mechanics. It holds that objects have complementary properties that cannot be measured accurately at the same time. For example, the particle and wave aspects of physical objects are such complementary phenomena. Both concepts are borrowed from classical mechanics, where it is impossible to be both, a particle and a wave at the same time. Particle and Wave represent the complementarity of the Discrete and the Continuous. Humans reason by means of concepts (meanings) and language, as well as, by means of logical or arithmetic symbolism. Meanings are continua, whereas logic and arithmetic are based on relations of identity and difference.
Fecha
2015
Tipo de fecha
Estado publicación
Términos clave
Desde disciplinas académicas | Evolución histórica de conceptos | Historia de la Educación Matemática | Usos o significados
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
3
Número
1
Rango páginas (artículo)
87-100
ISSN
23584750
Referencias
BELHOSTE, B., 1991. Augustin-Louis Cauchy. New York: Springer. BOCHNER, S., 1966. The Role of Mathematics in the Rise of Science. Princeton: University Press. CHURCHMAN, C.W. 1968, Challenge to Reason. New York: McGraw-Hill. COURANT, R. & ROBBINS, H., 1941. What is Mathematics? London:Oxford University Press. FREGE, G., 1966. Logische Untersuchungen. Göttingen: Vandenhoeck & Ruprecht. HAWKINS, T., 1970. Lebesgue’s Theory of Integration: Its Origins and Development. Madison and London: The University of Wisconsin Press. KANT, I., 1787. Critique of Pure Reason. English translation by Norman Kemp Smith, 1929. Palgrave Macmillan Pub. KOETSIER, T., 1991. Lakatos’ Philosophy of Mathematics: a historical approach. Amsterdam: North-Holland. LÉVI-STRAUSS, C., 1979. Myth and Meaning. New York: Schoken Books. MUELLER, I, 1969. Euclid’s elements and the axiomatic method. The British Journal for the Philosophy of Science 20, 289-309. NATIONAL GEOGRAFIC, 2002. Wolf to Woof: The Evolution of Dogs, National Geographic, vol. 201(1). OTTE, M., 1990. Arithmetic and Geometry, Studies in Philosophy and Education 10. PEIRCE, C. S. CP = Collected Papers of Charles Sanders Peirce, Volumes I-VI, ed. by Charles Hartshorne and Paul Weiss, Cambridge, Mass. (Harvard UP) 1931-1935, Volumes VII-VIII, ed. by Arthur W. Burks, Cambridge, Mass. (Harvard UP) 1958 (quoted by no. of volume and paragraph) POLYA, G., 1973. Induction and Analogy in Mathematics, Princeton UP. POTTER, M.D., 1990. Sets. Oxford: Clarendon Press. QUINE, W.O., 1974. The Roots of Reference. Open Court Publishing Company. RIEMANN, B., 1953. The Collected Works of Bernhard Riemann. New York: Dover. RUSSELL, B., 1993. Our Knowledge of the external World. London: Routledge. SLOMAN, A., 1978. The Computer Revolution in Philosophy, Sussex: The Harvester Press. SMIRNOV, G. A., 1972, “Ist die Mathematik extensional?”, in: H. Wessel (Hg.): Quantoren, Modalitäten, Paradoxien, Dt. Verl. d. Wissenschaft, Berlin. WHEWELL, W., 1847, The Philosophy of the Inductive Sciences, London, 2 vols. WILDEN, A., 1972. System and Structure: Essays in Communication and Exchange. London: Tavistock Publ.