Ikram, Muhammad; Purwanto, Purwanto; Parta, I Nengah; Susanto, Hery (2020). Mathematical reasoning required when students seek the original graph from a derivative graph. Acta Scientiae. Revista de Ensino de Ciências e Matemática, 22(6), pp. 45-64 .
![]()
| PDF - Versión Publicada Disponible bajo la licencia Creative Commons No Comercial Sin Derivar. 1324Kb |
URL Oficial: http://www.periodicos.ulbra.br/index.php/acta
Resumen
Background: Finding the original graph when given the derivative graph is not a trivial task for students, even though they can find the derivative graph when given the original graph. Objective: In the context of qualitative research, this paper presents and analyses the mathematical reasoning that comes to light when the students seek the original graph from a derivative graph. Design: The research is assigned as a qualitative study, where the analyses of cases aim to extend understanding with respect to some phenomena or theory. Setting and participants: The study was conducted with 86 students from a State University in East Java. We conducted clinical interviews, and present data highlighting the reasoning participants used when solving tasks. Data collection and analysis: Task-based interviews were used to collect data, and data analysis was used to analyse interpretations of the graphs that emerged as mathematical reasoning models. Results: From our data analysis, we found that three mathematical reasonings were rooted in students’ awareness of problem-situations on graphs we provided, consisting of direct reasoning, reversible reasoning, and combined direct-reversible reasoning. Conclusions: We suggest that there are different mathematical reasonings in the construction of the original graph, due to the mental activity in which students use the relation between a function and its derivative. We suggest that future projects continue this inquiry with rigorous single-subject experiments with students.
Tipo de Registro: | Artículo |
---|---|
Términos clave: | 06. Aprendizaje > Procesos cognitivos > Razonamiento 12. Investigación e innovación en Educación Matemática > Fuentes de información > Entrevistas 10. Otras nociones de Educación Matemática > Sistemas de representación > Gráfico 12. Investigación e innovación en Educación Matemática > Tipos de estudio > Estudio de casos |
Nivel Educativo: | Título de grado universitario |
Código ID: | 28651 |
Depositado Por: | Monitor Funes 2 |
Depositado En: | 13 Jun 2022 17:02 |
Fecha de Modificación Más Reciente: | 13 Jun 2022 17:02 |
Valoración: |
Personal del repositorio solamente: página de control del documento