Intellectual need and problem-free activity in the mathematics classroom
Tipo de documento
Autores
Lista de autores
Fuller, Evan, Rabin, Jeffrey M. y Harel, Guershon
Resumen
Intellectual need, a key part of the DNR theoretical framework, is posited to be necessary for significant learning to occur. This paper provides a theoretical examination of intellectual need and its absence in mathematics classrooms. Although this is not an empirical study, we use data from observed high school algebra classrooms to illustrate four categories of activity students engage in while feeling little or no intellectual need. We present multiple examples for each category in order to draw out different nuances of the activity, and we contrast the observed situations with ones that would provide various types of intellectual need. Finally, we offer general suggestions for teaching with intellectual need.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Abstracción | Comprensión | Contextos o situaciones | Otro (álgebra) | Otro (fundamentos)
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
4
Número
1
Rango páginas (artículo)
80-114
ISSN
21765634
Referencias
Gravemeijer, K. (1994). Developing Realistic Mathematics Education, Netherlands, Freudenthal Institute. Harel, G. (2007). The DNR System as a Conceptual Framework for Curriculum Development and Instruction. In R. Lesh, J. Kaput & E. Hamilton (Eds.), Foundations for the Future in Mathematics Education: Erlbaum. Harel, G. (2008a). DNR Perspective on Mathematics Curriculum and Instruction, Part I: Focus on Proving. Zentralblatt fuer Didaktik der Mathematik, 40, 487-500. Harel, G. (2008b). DNR Perspective on Mathematics Curriculum and Instruction, Part II. Zentralblatt fuer Didaktik der Mathematik 40, 893-907. Harel, G. (2008c). What is Mathematics? A Pedagogical Answer to a Philosophical Question. In R. B. Gold & R. Simons (Eds.), Proof and Other Dilemmas: Mathematics and Philosophy: Mathematical Association of America. Vinner, S. (1997). The Pseudo-Conceptual and the Pseudo-Analytical Thought Processes in Mathematics Learning. Educational Studies in Mathematics, 34(2), 97-129.