“Mathematics”? What do you mean? ─ Don’t play the fool; everybody knows it
Tipo de documento
Lista de autores
Cabral, Tânia Cristina Baptista y Baldino, Roberto Ribeiro
Resumen
We criticize the polysemy of the signifier “mathematics”. Its commonsense meaning should not be considered enough to ground mathematics education. We describe a form of speech emerging in Ancient Greece, originated from the social necessity to avoid intra-family clashes by means of precise agreements, written laws, and democratic dialog in a singular historical situation. This form of speech emerged together with coinage, was made numerically precise with the Pythagorean movement, and logically precise after the crisis unleashed by Russell’s paradox in the beginning of the last century. We show how this form of speech has developed in history together with communities that came to be known as “exact sciences”, among which is Mathematics, a distinguished community of speech. We end the paper suggesting a political agenda for mathematics education.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
36
Número
72
Rango páginas (artículo)
1-18
ISSN
19804415
Referencias
BALDINO, R. R.; CABRAL, T. C. B. The productivity of students’ schoolwork: An exercise in Marxist rigor. Journal for Critical Education Policy Studies, Athens, v. 11, n. 4, p. 70-84, nov. 2013. BALDINO, R. R.; CABRAL, T. C. B. Profitability of qualified-labor-power production. Journal for Critical Education Policy Studies, Athens, v. 13, n. 1, p. 67-82, jun. 2015. BALDINO, R. R.; CABRAL, T. C. B. Criticizing epistemic injustice: Rewarding effort to compensate for epistemic exclusion. Philosophy of Mathematics Education Journal, n. 38, n.p., (December 2021) Available at: http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome38/index.html Access in: 23 feb. 2022. » http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome38/index.html BATARCE, M. Mathematics in mathematics education: thinking Derrida in mathematics education. 2011. 123 p. Thesis (Doctoral dissertation in Philosophy) - London South Bank University, London, 2011. LUCY. Produção de Luc Besson. França, EuropaCorp., 2014, (89min). BIOLOGY. In: WIKIPEDIA: the free encyclopedia. [Wikimedia, 2020]. Available at: https://en.wikipedia.org/wiki/Biology Access in: 10 jan. 2020. » https://en.wikipedia.org/wiki/Biology CABRAL, T. C. B.; BALDINO, R. R. The credit system and the summative assessment splitting moment. Educ Stud Math, Utrecht, 102, p. 275-288, Ago. 2019. DOI https://doi.org/10.1007/s10649-019-09907-5 » https://doi.org/10.1007/s10649-019-09907-5 CABRAL, T. C. B.; PAIS, A.; BALDINO, R. R. Mathematics education’s solidarity assimilation methodology. In: CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION, 11, 2019, Utrecht. Electronic proceedings […] Utrecht: ERME, 2019. n.p. Available at: https://hal.archives-ouvertes.fr/hal-02421239/ Access in: 23 feb. 2022. » https://hal.archives-ouvertes.fr/hal-02421239/ CAUCHY, A-M. Cours d'analyse de l'École Royale Polytechnique. Paris: Jacques Gabay, 1989. 576 p. CHEMISTRY. In: WIKIPEDIA: the free encyclopedia. [Wikimedia, 2020]. Available at: https://en.wikipedia.org/wiki/Chemistry Access in: 10 jan. 2020. » https://en.wikipedia.org/wiki/Chemistry COULANGES, N. D. F. De. A cidade antiga. São Paulo: Martin Claret, 2005. 421 p. COURANT, R.; ROBBINS, H. What is mathematics? An elementary approach to ideas and methods. 2. ed. Oxford: Oxford University Press, 1996. Kindle Edition. DE FREITAS, E.; SINCLAIR, N. New materialist ontologies in mathematics education: the body in/of mathematics. Educ Stud Math, Utrecht, v. 83, n. 3, p. 453-470, jan. 2013. DOWLING, P. The sociology of mathematics education: Mathematical myths/pedagogic texts. London: Routledge, 1997. 352 p. ERNEST, P. Social constructivism as a philosophy of mathematics. Albany: State University of New York, 1998. 335 p. ERNEST, P. The problem of certainty in mathematics. Educ Stud Math, Utrecht, 92, n. 3, p. 379-393, nov. 2016. GOLD, B. What is Mathematics I: The question. In: POMSIGMAA - PHILOSOPHY OF MATHEMATICS, 10, 2003, Baltimore. Abstracts […] Baltimore: MAA, 2003. n.p. Available at: http://sigmaa.maa.org/pom/PomSigmaa/WhatMathI.htm Access in: 13 feb. 2010. » http://sigmaa.maa.org/pom/PomSigmaa/WhatMathI.htm GÖDEL, K. On formally undecidable propositions of Principia Mathematica and related systems. New York: Dover Publications, 1992. 72 p. GUTIERREZ, R. The sociopolitical turn in mathematics education. Journal for Research in Mathematics Education, Reston, v. 44, n. 1, p. 37-68, jan. 2013. HANSON, V. D. The savior generals. New York: Bloomsbury Press, 2013. HEGEL, G. W. F. The Phenomenology of Spirit (The phenomenology of mind). Overland Park: Newland Media LLC, 2012. Kindle Edition. HERSH, R. What is mathematics really? Oxford: Oxford University Press, 1999. 343 p. Kindle Edition. HILBERT, D. The Foundations of geometry. New Delhi: Prabhat Prakashan, 2015. Kindle Edition. HØYRUP, J. The roles of Mesopotamian bronze age mathematics tool for state formation and administration-carrier of teachers’ professional intellectual autonomy. Educ Stud Math, Utrecht, v. 66, n. 2, p. 257-271, jul. 2007. KENNEDY, P. Ascensão e queda das grandes potências. Rio de Janeiro: Editora Campus, 1989. KLEIN, J. Greek mathematical thought and the origin of algebra. New York: Dover Publications, 1968. 360 p. LACAN, J. Le séminaire de Jacques Lacan. Livre XVII: L'envers de la psychanalyse. Paris: Éditions du Seuil, 1991. 247 p. LACAN, J. The other side of psychoanalysis: The seminar of Jacques Lacan, book XVII. New York: W.W. Norton & Co., 2007. 224 p. LERMAN, S. The social turn in mathematics education research. In: Boaler, J. (org.). Multiple Perspectives on Mathematics Teaching and Learning: International Perspectives on Mathematics Education. Westport: Greenwood Publishing Group, 2000. p. 333-754. Kindle Edition. LUNDIN, S. Hating school, loving mathematics: On the ideological function of critique and reform in mathematics education. Educ Stud Math, Utrecht, v. 80, p. 73-85, may. 2012. MATHEMATICS. In: WIKIPEDIA: the free encyclopedia. [Wikimedia, 2020]. Available at: https://en.wikipedia.org/wiki/Mathematics Access 10 jan. 2020. » https://en.wikipedia.org/wiki/Mathematics MONZANI, J, C. Processos de integração e desintegração na Grécia no final da idade do bronze e início da idade do ferro (1300 A 800 A.C.). Mare Nostrum, São Paulo, v. 4, n. 4, p. 1-21, oct. 2013. MUMFORD, D. Preface. In: Seshadri, C. S. (org.). Studies in the history of indian mathematics: Culture and history of mathematics. New Delhi: Hindustan Book Agency, 2010. p. ix-xiii. Kindle Edition. NAGEL, E. Gödel's proof. New York: New York University Press, 2001. 129 p. NORTVEDT, G. A.; BUCHHOLTZ, N. Assessment in mathematics education: responding issues regarding methodology, policy and equity. ZDM Mathematic Education, Karlsruhe, v. 50, n. 4, p. 555-570, aug. 2018. PAIS, A. Mathematics, capitalism and biosocial research. Educ Stud Math, Utrecht, v. 101, n. 3, p. 373-386, jul. 2019. PAIS, A. An ideology critique of global citizenship education. Critical Studies in Education, London, 2017. http://dx.doi.org/10.1080/17508487.2017.1318772 » http://dx.doi.org/10.1080/17508487.2017.1318772 PAIS, A.; VALERO, P. Researching research: mathematics education in the political. Educational Studies in Mathematics, Utrecht, v. 80, p. 9-24, 2012. DOI: https://doi.org/10.1007/s10649-012-9399-5 » https://doi.org/10.1007/s10649-012-9399-5 PATRICK, P. The Speech Community. In: Chambers, J. K.; Trudgill, P.; Schilling, N. (org.). The Handbook of Language Variation and Change. Hoboken: Wiley-Blackwell, 2008.p. 431-450. PHYSICS. In: WIKIPEDIA: The free encyclopedia. [Wikimedia, 2020]. Available at: https://en.wikipedia.org/wiki/Physics Access in: 10 jan. 2020. » https://en.wikipedia.org/wiki/Physics POLANYI, K. A grande transformação: as origens políticas e econômicas de nossa época. Rio de Janeiro: Contraponto, 2021. RAVN, O.; SKOWSMOSE, O. Connecting humans to equations. Cham: Springer, 2019. 188 p. ROONEY, A. A história da matemática: Desde a criação das pirâmides até a exploração do infinito. São Paulo: M. Books, 2012. 216 p. RUBEL, L. Equity-directed instructional practices: Beyond the dominant perspective. Journal of Urban Mathematics Education, Texas, v. 10, n. 2, p. 66-105, dec. 2017. RUSSELL, B. Mysticism and logic and other essays. New Delhi: Prabhat Prakashan, 2017. 123 p. Kindle Edition. SCOTT, C. A. “The International Congress of Mathematicians in Paris”. Bull. Amer. Math. Soc., Rhode Island, v. 7, p. 57-79, nov. 1900. SOHN-RETHEL, A. Intellectual and manual labor: A critique of Epistemology. New Jersey: Humanities Press, 1978. 216 p. TABACH, M. Research and teaching – can one person do both? a case study. In: NOVOTNÁ, J.; MORAOVÁ, H.; KRÁTKÁ, M.; STEHLÍKOVÁ, N. (ed.). Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education. Prague: PME, 2006. p. 233-240. THOMSON, G. First philosophers. London: Humanities Press, 1978. 367 p. VINNER, S. From intuition to inhibition. Mathematics education and other endangered species. In: PEHKONEN, E. (ed.). Proceedings of the 21th Conference of the International Group for Psychology of Mathematics Education. Helsinki: Lahti Research and Training Centre, University of Helsinki, 1997. p. 63-78. ŽIŽEK, S. The sublime object of ideology. London: Verso, 1999. 240 p. ŽIŽEK, S. Less than nothing: Hegel and the shadow of dialectical materialism. London: Verso, 2012. 1037 p.