An Analysis of the Use of Graphs in People’s Daily Life
Tipo de documento
Autores
Lista de autores
Zaldívar, José y Cordero, Francisco
Resumen
This research paper addresses the lack of connection between people's own knowledge and the use of mathematical functions and scholastic mathematics. Experts in the field acknowledge that this issue generates a phenomenon of opacity in people's daily lives and the use of mathematical knowledge. Put in other words, other mathematical social functions, apart from those utilized in school environments, are not considered. To highlight this phenomenon, empirical evidence is built from the analysis of cultural forms of knowledge concerning the use of graphs in a setting of movement. Such evidence is overshadowed by scholastic mathematics, due to that fact that the foresaid forms are immersed in non-conventional argumentations. A reference framework of the use of graphs that resignifies trajectory and curve then arises. In this framework, the search for permanence and invariants when things vary gives way to the very argumentation of one's own mathematical knowledge that is, however, obscured in scholastic mathematics.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Calculadoras | Conocimiento | Empírica | Gráfica | Otra (modalidad)
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
Arnay, J. (1997). Reflexiones para un debate sobre la construcción del conocimiento en la escuela: Hacia una cultura científica escolar. [Reflections for a debate on the construction of knowledge in school: Towards a school scientific culture] In M. A. Rodrigo and J. Arnay (Comps.), La construcción del conocimiento escolar (pp. 30-45). Paidós. Berger, P. and Luckmann, T. (1991). The social construction of reality: A treatise in the sociology of knowledge. Penguin Books. Buendía, G. and Cordero, F. (2005). Prediction and the periodical aspect as generators of knowledge in a social practice framework. Educational Studies in Mathematics, 58, 299–333. Buendía, G. and Montiel, G. (2011). From history to research in mathematics education: Socio-epistemological elements for trigonometric functions. In V. Katz and C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education (pp. 67–82). MMA Notes. Cantoral, R. (2013). Teoría socioepistemológica de la matemática educativa: Estudios sobre construcción social del conocimiento. [Socioepistemology theory in mathematics education: Research on social construction of knowledge]. Editorial Gedisa. Cantoral, R. and Farfán, R. (2003). Mathematics education: A vision of its evolution. Educational Studies in Mathematics, 53(3), 255–270. Cantoral, R., Moreno-Durazo, A. and Caballero-Pérez, M. (2018). Socio-epistemological research on mathematical modelling: An empirical approach to teaching and learning. ZDM, 50, 77–89. Chevallard, Y. (2013). Enseñar matemáticas en la sociedad del mañana: Alegato a favor de un contraparadigma emergente. [Teaching mathematics in tomorrow’s society: Plea in favor of an emerging counter-paradigm]. Journal of Research in Mathematics Education, 2(2), 161–182. Civil, M. (2002). Everyday mathematics, mathematicians’ mathematics, and school mathematics: Can we bring them together? In M. E. Brenner and J. N. Moschkovich (Eds.), Everyday and Academic Mathematics in the Classroom (pp. 40–62). The National Council of Teachers of Mathematics [NCTM]. Cordero, F. (2008). El uso de las gráficas en el discurso del cálculo escolar: Una visión socioepistemológica. [The use of graphs in the school mathematical discourse. A Socioepistemoly vision]. In R. Cantoral, O. Covián, R. M. Farfán, J. Lezama and A. Romo (Ed.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: Un reporte iberoamericano (pp. 285-309). Díaz de Santos-Comité Latinoamericano de Matemática Educativa. Cordero, F., Cen, C. and Suárez, L. (2010). Los funcionamientos y formas de las gráficas en los libros de texto: una práctica institucional en el bachillerato. [The functionality and form of graphics in textbooks: A high-school institutional practice]. Revista Latinoamericana de Investigación en Matemática Educativa, 13(2), 187-214. Cordero, F., Gómez, K., Silva, H. & Soto, D. (2015). El discurso matemático escolar: adherencia, exclusion y opacidad. [The school mathematical discourse: Adherence, exclusion and opacity]. Gedisa. Cordero, F. (2016). Modelación, funcionalidad y multidisciplinaridad: el eslabón de la matemática y el cotidiano [Modeling, functionality and multidisciplinarity: The link of mathematics and everyday life]. In J. Arrieta and L. Díaz (Eds.), Investigaciones latinoamericanas de modelación de la matemática educativa (pp. 59-88). Gedisa. DiSessa, A., Hammer, D. and Sherin, B. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117-160. Hoyles, C., Noss, R. and Pozzi, S. (2001). Proportional reasoning in Nursing practice. Journal for Research in Mathematics Education, 32(1), 4-27. Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge University Press. Leinhardt, G.; Zaslavsky, O. and Stein, M. (1990). Functions graphs and graphing: Tasks, Learning and Teaching. Review of Educational Research, 60(1), 1-64. Moschkovich, J. (2002). An introduction to examining everyday and academic mathematical practices. In M. E. Brenner and J. M. Moschkovich (Eds.), Everyday and Academic mathematics in the classroom (pp. 1-11). The National Council of Teachers of Mathematics [nctm]. Nemirovsky, R. Tierney, C. and Tracy, W. (1998). Body and graphing. Cognition and Instruction, 16(2), 119–172. Nunes, T., Schliemann, A. andCarraher, D. (1993). Street mathematics and school mathematics. Cambridge University Press. Planas, N. (2006). Modelo de análisis de videos para el estudio de procesos de construcción de conocimiento matemático. Educación Matemática, 18(1), 37-72. Pozzi, S., Noss, R., and Hoyles, C. (1998). Tools in practice, mathematics in use. Educational Studies in Mathematics, 36, 105–122. Radford, L. (2009). Signifying relative motion: Time, space and the semiotics of cartesian graphs. In W. M. Roth (Ed.), Mathematical representation at the interface of body and culture (pp. 45-69). Information Age Publishing. Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7–44. Radford, L. (2014). Un recorrido a través de la teoría de la objetivación. In S. Takeko and L. Radford (Comps.), Teoria da objetivação: fundamentos e aplicações para o ensino e aprendizagem de ciências e matemática. Editora Livraria da Física. Radford, L., Edwards, L., and Arzarello, F. (2009). Introduction: Beyond words. Educational Studies in Mathematics, 70, 91-95. Rodrigo, M. J. (1997). El hombre de la calle, el científico y el alumno: ¿un solo constructivismo o tres? [The man in the street, the scientist and the student: A single constructivism or three?]. Novedades Educativas, 76, 59-65. Roqueplo, P. (1974). Le partage du savior. Science, culture, vulgarization. Seuil. Roth, W.-M. (2001). Gestures: Their role in teaching and learning. Review of Educational Research, 71(3), 365–392. Slater, E., Morris, J., and McKinnon, D. (2018). Astronomy alternative conceptions in pre-adolescent students in Western Australia. International Journal of Science Education, 40(17), 2158-2180. Soto, D. and Cantoral, R. (2014). Discurso matemático escolar y exclusión: Una visión socioepistemológica [School Mathematical Discourse and exclusion. A socioepistemological vision]. Boletim de Educação Matemática, Rio Claro, 28(50), 1525–1544. Suárez, L. and Cordero, F. (2010). Modelación-graficación, una categoría para la matemática escolar: Resultados de un estudio socioepistemológico [Modeling-graphing, a category for school mathematics: Results of a socioepistemological study]. Revista Latinoamericana de Investigación en Matemática Educativa, 13(4-II), 319-333. Tuyub, I. and Cantoral, R. (2012). Construcción social del conocimiento matemático durante la obtención de genes en una práctica toxicológica [Social construction of mathematical knowledge during the obtaining of genes in a toxicological context]. Boletim de Educaçao Matemática, 26, 311–328. Zaldívar, D. (2014). Un estudio de la resignificación del conocimiento matemático del ciudadano en un escenario no escolar (Unpublished doctoral dissertation). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México.