Tareas y aprendizajes matemáticos en bachillerato. Un estudio de contextos
Tipo de documento
Autores
Aparicio, Eddie | Jarero, Martha Imelda | Sosa, Landy | Tuyub, Isabel
Lista de autores
Aparicio, Eddie, Sosa, Landy, Tuyub, Isabel y Jarero, Martha Imelda
Resumen
En el escrito se presentan algunos resultados obtenidos en un trabajo de investigación enmarcado en la teoría socioepistemológica. Particularmente se discute un análisis de los aprendizajes matemáticos asociados a la noción de función como relación entre variables, en jóvenes de bachillerato desde una perspectiva contextual del conocimiento. Se infiere que el contexto guarda estrecha relación con las formas en que estudiantes movilizan su matemática y su pensar, por lo que el aprendizaje se caracteriza como un proceso relacional epistémico contextual.
Fecha
2012
Tipo de fecha
Estado publicación
Términos clave
Aprendizaje | Contextos o situaciones | Epistemología | Funciones | Tareas
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Flores, Rebeca
Título del libro
Acta Latinoamericana de Matemática Educativa
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
855-862
ISBN (capítulo)
Referencias
Aparicio, E. y Cantoral, R. (2006). Aspectos discursivos y gestuales asociados a la noción de continuidad puntual. Revista Latinoamericana de Matemática Educativa. 9(1), 7-30. Aparicio, E., Cantoral, R. (2007). La formazione della nozione di continuità puntuale presso gli studenti dell'università. Un approccio socioepistemologico. La Matematica e la sua Didattica. Pitagora Editrice Bologna, 21(2) 163-196. Aparicio, E., Cantoral, R. (2003). Sobre la noción de continuidad puntual: Un estudio de las formas discursivas utilizadas por estudiantes universitarios en contextos de geometría dinámica. Epsilon56, 169-198. Artigue, M. (1995). Ingeniería didáctica en educación matemática. En M. Artigue, R. Douady, L. Moreno, P. Gómez (Eds), La enseñanza de los principios del cálculo: Problemas epistemológicos, cognitivos y didácticos (pp. 97-107). Iberoamérica, México. Canul, E. (2007). Actitudes generalizadas sobre la enseñanza de la matemática en el nivel medio. Tesis de licenciatura no publicada. Universidad Autónoma de Yucatán. Facultad de Matemáticas. Chappet Pariès, M. (2004). Comparaison de practiques D’ Enseignants de Mathématiques Relations Entre Discours Des Professeurs Et Activités Potentielles Des Élèves. Recherches en Didactique des Mathemátiques, 24(2.3), 251 – 284. Crespo, C., Farfán, R. y Lezama, J. (2009). Algunas características de las argumentaciones y la matemática en escenarios sin influencia aristotélica. Revista Latinoamericana de Investigación en Matemática Educativa 12(1), 29 – 66. Guida de Abreu, M (2000). Relationships Between Macro and Micro Socio-Cultural Contexts: Implcations for the Study of Interactions in the Mathematics Classroom. Educational Studies in Mathematics, 41, 1-29. Edwards, L. (2009). Gestures and conceptual integration in mathematical talk.Educational Studies in Mathematics, 70, 127-141. Lerman, S. (2001). Cultural, discursive psychology: a sociocultural approach to studying the teaching and learning of mathematics. Educational studies in mathematics 46 (1-3), 87–113. Nuñez, R. (2006). Do real numbers really move? Languaje, thought, and gesture: The embodied cognitive foundations of mathematics. En R. Hersh (Ed.) 18 unconventional essays on the nature of mathematics (pp. 160 – 181).New York, USA: Springer. O’ Connor, M.C. (1998). Language socialization in the mathematics classroom: Discourse practices and mathematical thinking. In M. Lambert & M.L. Blunk (Eds.) Talking Mathematics in School: Studies of Teaching and Learning. (pp.17-55).Cambridge University Press, Cambridge, UK. Radford, L. (2003). Gestures, speech and the sprouting of signs.Mathematical Thinking and Learning, 5(1), 37 -70. Radford, L. (2006). Elementos de una cultura de la objetivación. Revista Latinoamericana de Investigación en Matemática Educativa. Número especial. 103-129. Sfard, A. (2001). There is more to Discourse than Meets The Eras: Looking At Thinking As Communicating To Learn More About Mathematical Learning. Educational Studies in Mathematics, 46, 13 – 47.
Proyectos
Cantidad de páginas
1472