Propuesta didáctica sobre la construcción de la recta tangente sin el uso de la derivada
Tipo de documento
Autores
Lista de autores
Karelin, Oleksandr, Rondero, Carlos y Tarasenko, Anna
Resumen
El trabajo contiene resultados sobre la construcción de la recta tangente para las funciones elementales sin derivar así como para las funciones formadas por operaciones lineales y aritméticas entre ellas. Dentro del estudio de las nociones fundamentales del cálculo, se consideran: crecimiento, decrecimiento, puntos mínimos y máximos, concavidad y conexiones entre sí. Con base a estas relaciones se presentó, en trabajos previos, un enfoque no tradicional acerca de la construcción de la recta tangente. Para ello, dicho problema se redujo a la búsqueda de puntos extremos de una función adicional que está conectada con la función inicial. La propuesta didáctica que se ha venido estructurando, posibilita el entender más profundamente las nociones fundamentales del cálculo y sus articulaciones entre sí y está dirigida a los profesores y estudiantes de matemáticas de los niveles educativos medio superior y superior.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación técnica, educación vocacional, formación profesional
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Martínez, Gustavo
Título del libro
Acta Latinoamericana de Matemática Educativa
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
386-391
ISBN (capítulo)
Referencias
Rondero, C., Karelin, O., & Tarasenko A. (2004). Métodos alternativos en la búsqueda de los puntos críticos y derivadas de algunas funciones. En Díaz Moreno L. (Ed.) Acta Latinoamericana de Matemática Educativa (volumen 17, pp. 821-827). Tuxtla Gutiérrez, México: CLAME. Boyer, C., & Merzbach, U. (1989). A History of Mathematics. Nueva York. EE.UU: John Wiley. Edwards, C.H. (1979).The Historical development of the Calculus. Nueva York. EE.UU: Springer-Verlag. Kline, M., . (1972). Mathematical Thought from Ancient to Modern Times. Nueva York. EE.UU: Oxford University Press. Stewart, J. (1999). Cálculo, Conceptos y Contextos, México: International Thomson Editores.