Las argumentaciones por reducción al absurdo como construcción sociocultural
Tipo de documento
Autores
Lista de autores
Crespo, Cecilia
Resumen
Este trabajo forma parte de una investigación orientada a analizar las características y el papel que desempeñan las demostraciones y argumentaciones matemáticas en el aula. La investigación se ubica en la perspectiva socioepistemológica. Esta etapa de la investigación se centra en las características de las argumentaciones por reducción al absurdo, tratando de comprender a éstas como un recurso de validación de resultados en matemática que se logra a través de una construcción socio-cultural. En particular el carácter cultural se ha focalizado en el aspecto profesional, por lo que la atención se fijó en estudiantes de distintas carreras y formaciones, tratando de determinar las diversas concepciones de argumentaciones de alumnos y los mecanismos de su funcionamiento.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación superior, formación de pregrado, formación de grado | Educación técnica, educación vocacional, formación profesional
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Martínez, Gustavo
Título del libro
Acta Latinoamericana de Matemática Educativa
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
766-772
ISBN (capítulo)
Referencias
Crespo, C. (2003). Las demostraciones como contenido matemático. Presentado en la VII Escuela de Invierno y VII Seminario de Investigación en Didáctica de las Matemáticas. Chilpancingo, Guerrero. Crespo, C. (2005). El papel de las argumentaciones matemáticas en el discurso escolar. La estrategia de deducción por reducción al absurdo. Tesis de Maestría sin publicar. CICATA-IPN, México. Crespo, C.; Ponteville, Ch. (2003). Las concepciones de los docentes acerca de las demostraciones. En Díaz, L. (Ed.) Volumen 17. Tomo 1 (pp.39-44). Crespo, C.; Ponteville, Ch. (2004). Las funciones de la demostración en el aula de matemática. Presentado en RELME 18, Tuxtla Gutiérrez, Chiapas, México. Euclides (1991). Elementos. Libros I-IV. Madrid: Gredos. Godino, J.; Recio, Á. (2001). Significados institucionales de la demostración. Implicaciones para la educación matemática. En Enseñanza de las ciencias, 19 (3)(pp.405-414) Lizcano, E. (1993). Imaginario colectivo y creación matemática. Barcelona: Gedisa. Sáenz, C. (2002). Sobre conjeturas y demostraciones en la enseñanza de las matemáticas. En Moreno, M. F. y otros (Ed.) Actas del Quinto Simposio de la Sociedad Española de Investigación en Educación Matemática. Universidad de Almería. (pp.47-62). Toranzos, F. (1943). Introducción a la epistemología y fundamentación de la matemática. Buenos Aires: Espasa Calpe Argentina.