Geometric constructions on spheres and planes in Rn
Tipo de documento
Autores
Lista de autores
Kosta, Neza Mramor y Zlobec, Borut Jurcic
Resumen
Using Lie geometry and the Lie product in Rn+3, we give an algebraic description of geometric objects constructed from spheres and planes of dimension n−k, k ≥ 1 in Rn. We define algebraic invariants, which characterize geometric properties of these objects, and their position in Rn.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Luna, Joaquín | Luque, Carlos Julio | Oostra, Arnold | Pérez, Jesús Hernando | Ruiz, Carlos
Lista de editores (capitulo)
Luna, Joaquín, Luque, Carlos Julio, Oostra, Arnold, Pérez, Jesús Hernando y Ruiz, Carlos
Título del libro
Memorias XVI Encuentro de Geometría y IV encuentro de Aritmética
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
171-180
Referencias
[1] BEHNKE, H., Geometry, Fundamentals of Mathematics. Vol. 2, MIT Press, 1974. [2] CECIL, T., Lie Sphere Geometry with Applications to Minimal Submanifolds. Springer, Berlin, 1992. [3] FILLMORE, J.; SPRINGER, A., Planar sections of the quadric of Lie cycles and their Euclidean interpretations. Geometriae Dedicata. 55 (1995), 175–193. [4] JURˇCIˇC B.; MRAMOR N., Configurations of cycles and the Apollonius problem, Rocky Mountains J. Math, 31, No.2 (Summer 2001). [5] JURˇCIˇC B.; MRAMOR N., Geometric Constrictions on Cycles, Rocky Mountains J. Math, 34, No.4 (Winter 2004). [6] PEDOE, D., Geometry. Dover Publications, 1988. [7] RIGBY, J., The Geometry of Cycles, and Generalized Laguerre Inversion, in The Geometric Vein, The Coxeter Festschrift. eds. C. Davis, B. Gr¨unbaum, and F.A. Sherk, Springer, New York, 1981, 355–378. [8] YAGLOM, I., On the Circular Transformations of M¨obius, Laguerre, and Lie, in The Geometric Vein, The Coxeter Festschrift. eds. C. Davis, B. Gr¨unbaum, and F.A. Sherk, Springer, New York, 1981, 345–354.
Proyectos
Cantidad de páginas
722