Desarrollo histórico del problema de Plateau
Tipo de documento
Autores
Lista de autores
Méndez, Luz Yecenia
Resumen
El problema de Plateau consiste en determinar la existencia de una superficie minimal acotada por un contorno dado. En el presente artículo se expone brevemente las investigaciones matemáticas más destacadas en la historia del problema de Plateau, en particular, las dos primeras soluciones del problema.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Estrategias de solución | Evolución histórica de conceptos | Geometría | Relaciones geométricas | Teoremas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Luna, Joaquín | Luque, Carlos Julio | Oostra, Arnold | Pérez, Jesús Hernando | Ruiz, Carlos
Lista de editores (capitulo)
Luna, Joaquín, Luque, Carlos Julio, Oostra, Arnold, Pérez, Jesús Hernando y Ruiz, Carlos
Título del libro
Memorias XVI Encuentro de Geometría y IV encuentro de Aritmética
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
547-558
Referencias
[A1] ALMGREN, F. J., Jr., Some interior regularity theorems for minimal surfaces and an extensions of Bernstein’s theorem. Annals of Mathematics, 84 (1966), 277–292. [A2] ALMGREN, F. J., Jr., Plateau’s Problem: an invitation to varifold geometry. New York – Amsterdam: W. A. Benjamín, 1966. [Be] BERNSTEIN, S., Sur le probléme de Dirichlet généralisé. Mathematische Annalen, 69 (1910), 82–136. [BT] B¨OHME, R.; TROMBA, A., The index theorem for classical minimal surfaces. Annals of Mathematics, 113 (1981), 447–499. [C1] COURANT, R., Plateau’s problem and Dirihlet’s principle. Annals of Mathematics, 38 (1937), 679–725. [C2] COURANT, R., On a generalized form of Plateau’s problem. Transactions of the American Mathematical Society, 50 (1941), 40–47. [C3] COURANT, R., Dirichlet’s principle, conformal mapping, and minimal surfaces. New York – Heidelberg – Berlin: Springer–Verlag, 1977. [DC] DO CARMO, M. P., Superficies Mínimas. Rio de Janeiro: IMPA, 1987. [D1] DOUGLAS, J., Solution of the problem of Plateau. Transactions of the American Mathematical Society, 33 (1931), 263–321. [D2] DOUGLAS, J., The problem of Plateau. Bulletin of the American Mathematical Society, 39 (1933), 227–251. [D3] DOUGLAS, J., The problem of Plateau for two contours. Journal of Mathematics and Physics of the Massachusetts Institute of Technology, 10 (1931), 315–359. [D4] DOUGLAS, J., One–side minimal surfaces with a given boundary. Transactions of the American Mathematical Society, 34 (1932), 731–756. [D5] DOUGLAS, J., Minimal surfaces of higer topological structure. Annals of Mathematics, 40 (1939), 315–359. [FF] FEDERER, H.; FLEMING,W. H., Normal and integral currents. Annals of Mathematics, 72 (1960), 458–520. [Ga] GARNIER, R., Le probléme de Plateau. Annales Scientifiques de l’Ecole Normale Sup´erieure, 45 (1928), 53–144. [GHS] GUILLEMIN V.; KOSTANT B.; STERNBERG S., Douglas’ solution of the Plateau problem. Proceedings of the National Academy of Sciences of United States of America, 85 (1988), 3277-3278. [Gu] GULLIVER, R. D., Regularity of minimizing surfaces of prescribed mean curvature. Annals of Mathematics, 97 (1973), 275–305. [Ha] HAAR, A., Ueber das Plateausche–Problem. Mathematische Annalen, 97 (1927), 124– 158. [H1] HILDEBRANDT, S., Boundary behaviour of minimal surfaces, Archive for Rational Mechanics and Analysis, 35 (1969), 47–82. [H2] HILDEBRANDT, S., On the Plateau problem for surfaces of constant mean curvature. Communications on Pure and Applied Mathematics, 23 (1970), 97–114. [HT] HILDEBRANDT, S.; TROMBA, A., Matemáticas y formas ´optimas, Barcelona: Prensa Científica, 1990. [La] LAGRANGE, J. L., Essai d’une nouvelle méthode pour déterminer les maxima et minima des formules intégrales indéfinies. Miscellanea Taurinensia, 2 (1760), 173–195. Oeuvres de Lagrange. Paris: Gauthiers–Villars, 1, 1867, pág. 335. [Le] LEWY, H., On the boundary behaviour of minimal surfaces. Proceedings of the National Academy of Sciences of United States of America, 37 (1951), 103–110. [McS] McSHANE, E. J., Parametrizations of saddle surfaces, with applications to the problem of Plateau. Transactions of the American Mathematical Society, 35 (1933), 716–733. [Mo] MORREY, C. B., Jr., The problem of Plateau on a Riemannian manifold. Annals of Mathematics, 49 (1948), 807–851. [N1] NITSCHE J. C. C., A new uniqueness theorem for minimal surfaces. Archive for Rational Mechanics and Analysis, 52 (1973), 319–329. [N2] NITSCHE J. C. C., Minimal surfaces and partial differential equations. Editado por: LITTMAN, W., Studies in partial differential equations. Published and distributed by The Mathematical Association of America, Studies in Mathematics, Vol. 23, 1982, pp. 69–142. [Os] OSSERMAN, R., A proof of the regularity everywhere of the classical solution to Plateau’s problem. Annals of Mathematics, 91 (1970), 550–569. [Pl] PLATEAU, J. A. F., Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. París: Gauthier–Villars, 1873. [R1] RAD´ O, T., The problem of least area and the problem of Plateau. Mathematische Zeitschrift, 32 (1930), 762–796. [R2] RAD´ O, T.,An iterative process in the problem of Plateau. Transactions of the American Mathematical Society, 35 (1933), 869–887. [R3] RAD´ O, T., On the problem of Plateau. New York: Chelsea Publishing Company, 1951. [Re] REIFENBERG, E. R., Solution of the Plateau’s problem for m–dimensional surfaces of varying topological type. Acta Mathematica, 104 (1960), 1–92. [Ri] RIEMANN, B., ¨ Uber die Fl¨ache vom Kleinsten Inhalt bei gegebener Begrenzung. Memorias de la Real Sociedad de G¨ottingen, 13, Editadas por K. Hattendorff, 1867. [Sc] SCHWARZ, H., Gesammelte Mathematische Abhandlungen. Berl´ın: Springer, 1, 1890. [Tr] TROMBA, A., On the number of solutions to Plateau’s problem. Bulletin of the American Mathematical Society, 82 (1976), 66–68. [We] WEIERSTRASS, K., Analytische Bestimmung einfach zusammenh angender Minimalfl achen deren Begrenzung aus geradliningen, ganz im endlinchen liegenden Strecken besteht. Mathematische Werke. Berlín: Mayer & Müller, 3 (1903), págs.: 39–52, 219–220, 221–238.
Proyectos
Cantidad de páginas
722