Resolución de problemas y talento matemático
Tipo de documento
Autores
Lista de autores
Mosquera, Uldarico y Yepes, Aleida
Resumen
Las investigaciones sobre resolución de problemas matemáticos y talento matemático en los últimos años ha sido una constante en el pensamiento y los trabajos de psicólogos, pedagogos y matemáticos. El presente ensayo recoge la experiencia (2003 - 2004) que ha tenido el parte equipo del área de matemática del Instituto Alberto Merani sobre el respecto, en donde la pregunta sobre los tipos de conocimiento necesarios para la resolución de problemas matemáticos se entrevero con la pregunta del talento matemático dando como producto una serie de indicadores que podrían dar pistas en la detección de posibles talentos matemáticos.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Luna, Joaquín | Luque, Carlos Julio | Oostra, Arnold | Pérez, Jesús Hernando | Ruiz, Carlos
Lista de editores (capitulo)
Luna, Joaquín, Luque, Carlos Julio, Oostra, Arnold, Pérez, Jesús Hernando y Ruiz, Carlos
Título del libro
Memorias XVI Encuentro de Geometría y IV encuentro de Aritmética
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
683-694
Referencias
[1] ANDRE, T., Problem solving and education. En G.D. Phye y T. Andre (Eds.), Cognitive classroom learning. Understanding, thinking, and problem solving. New York: Academic Press. 1986. [2] BA˜NUELOS, A., Resolución de problemas matemáticos en estudiantes de bachillerato. Perfiles Educativos, N◦ 67, 50-58. 1995. [3] BRIARS, D.; LARKIN, J., An integrated model of skill in solving elementary word problems. Cognition& instruction, 1, 245-296. 1984. [4] BROWN, J.; BURTON, R., Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155-192. 1978. [5] BROWN, J.; VANLEHN, K., Repair theory: A generative theory of bugs in procedural skills. Cognitive Science, 4, 379-426. 1980. [6] CARPENTER, T., Learning to add and substract: An exercise in problem solving. En E.A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: L.E.A. 1985. [7] CARPENTER, T.; MOSER, J., The acquisition of addition and substraction concepts in grades one through three. Journal of Research in Mathematics Education, 15, 170- 202. 1984. [8] CHI, M.; GLASER, R., Problem solving abilities. Material mimeografiado. 1983. [9] CHI, M.; FELTOVICH, P; GLASER, R., Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152. 1981. [10] CHI, M.; GLASER, R.; REES, E., Expertise in problem solving. En R. Sternberg (Ed.), Advances in the psychology of human intelligence. Vol. 1. Hillsdale, NJ: Erlbaum. 1981. [11] DIJKSTRA, S., Instructional design models and the representation of knowledge and skills. Educational Technology, 31, (6), 19-26. 1991. [12] DUHALDE, M.; GONZ´ALEZ, M., Encuentros cercanos con la matemática. Buenos Aires: Aique. 1997. [13] GAGN´ E, R.; GLASER, R., Foundations in learning research. En R.M. Gagn´e (Ed.), Instructional technology: Foundations. Hillsdale, NJ: Erlbaum. 1987. [14] GOLDMAN, S., Strategy instruction in mathematics. Learning Disability Quarterly, 12, 43-55. 1989. [15] GREENO, J., Trends in the theory of knowledge for problem solving. En D.T. Tuma y F. Reif (Eds.), Problem solving and education. Issues in teaching and research. Hillsdale, NJ: Erlbaum. 1980. [16] GROEN, G.; PARKMAN, J., A chronometric analysis of simple addition. Psychological Review, 79, 329-343. 1972. [17] HAYES, J., The complete problem solver. Philadelphia: Franklin Institute Press. 1981. [18] HEGARTY, M.; MAYER, R.; MONK, C., Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87, 18-32. 1995. [19] HINSLEY, D.; HAYES, J.; SIMON, H., From words to equations: Meaning and representation in algebra word problems. En M.A. Just y P.A. Carpenter (Eds.), Cognitive processes in comprehension. Hillsdale, NJ: Erlbaum. 1977. [20] JITENDRA, A.; KAMEENUI, E., Experts’ and novices’ errors patterns in solving part-whole mathematical word problems. The Journal of Educational Research, 90, (1), 42-51. 1996. [21] KANTOWSKI, M., The teaching experiments and soviet studies of problem solving. En I.L. Hatfield y D.A. Bradbard (Eds.), Mathematical problem solving: Papers from a research workshop. Columbus, Ohio: ERIC/SMEAC. 1978. [22] KILPATRICK, J., Analyzing the solution of word problems in mathematics. An exploratory study. Tesis doctoral. Universidad de Stanford, California. Dissertation Abstracts International, 1968, 28, 4380A. 1967. [23] KINTSCH, W., Learning from text. Cognition& Instruction, 3, 87-108. 1986. [24] KINTSCH, W., Understanding word problems: Linguistic factors in problem solving. En M. Nagao (Ed.), Language and artificial intelligence. North Holland: Elsevier Science Publisher B.V. 1987. [25] KINTSCH, W.; GREENO, J., Understanding and solving arithmetic word problems. Material mimeografiado. 1984. [26] KINTSCH, W.; VANDIJK, T., Toward a model of text comprehension and production. Psychological Review, 85, 363-394. 1978. [27] KRULIK, S.; RUDNICK, J., Teaching problem solving to preservice teachers. Arithmetic Teacher, February, 42-49. 1982. [28] LARKIN, J.; MCDERMOTT, P.; SIMON, D.; SIMON, H. A, Expert and novice performance in solving physics problems. Science, 208, 1335-1342. 1980. [29] LESTER, F., Mathematical problem solving in the elementary school: Some educational and psychological considerations. En L.L. Hatfield y D.A. Bradbard (Eds.), Mathematical problem solving: Papers from a research workshop. Columbus, Ohio: ERIC/SMEAC. 1978. [30] MAYER, R., Frequency norms and structural analysis of algebra story problems into families, categories and templates. Instructional Science, 10, 135-175. 1981. [31] MAYER, R., Thinking, problem solving and cognition. New York: Freeman. 1983. [32] MAYER, R., Cognition and instruction: Their historic meeting within educational psychology. Journal of Educational Psychology, 84, (4), 405-412. 1992. [33] MONEREO, C.; Castelló, M.; Clariana, M.; Palma, M.; Pérez, M., Estrategias de enseñanza y aprendizaje. Formación del profesorado y aplicación en la escuela. Barcelona: Graó. 1995. [34] NEWELL, A.; SIMON, H., Human problem solving. Englewood Cliffs, NJ: Prentice Hall. 1972. [35] NORMAN, D.; RUMELHART, E., Explorations in cognition. San Francisco: Freeman. 1975. [36] POLYA, G., Mathematical discovery: On understanding, learning and teaching problem solving. Vol. 2. New York: Wiley. 1965. [37] RESNICK, L.; FORD, W., The psychology of mathematics for instruction. Hillsdale, NJ: L.E.A. 1981. [38] RIMOLDI, H., Solución de problemas: Teoría, metodología y experimentación. Revista de Psicología General y Aplicada, 39, 75-96. 1984. [39] SCHOENFELD, A., Mathematical problem solving. Orlando, FL: Academic Press. 1985. [40] SIEGLER, R.; SHRAGER, J., Strategy choices in addition: How children know what to do. Trabajo presentado en el décimo octavo Simposio Anual Carnegie sobre Cognición. Pittsburgh, PA. 1983. [41] SUPPES, P.; GROEN, G.J., Some counting models for first grade performance data on simple addition facts. En J.M. Scandura (Ed.), Research in mathematics education. Washington, D.C.: National Council of Teachers of Mathematics. 1967. [42] STERNBERG, R., Razonamiento, solución de problemas e inteligencia. En R.J. Sternberg (Ed.), Inteligencia humana, II. Cognición, personalidad e inteligencia. Buenos Aires: Paidós. 1987. [43] STIGLER, J.; LEE, S; STEVENSON, H., Mathematical knowledge of Japanese, Chinese, and American elementary school children. Reston, VA: National Council of Teachers of Mathematics. 1990. [44] WALLAS, G., The art of thought. New York: Harcourt Brace Jovanovich. 1926.
Proyectos
Cantidad de páginas
722