Modelos de enfriamiento en recocido simulado
Tipo de documento
Autores
Lista de autores
Chavarría, Jeffry y Fallas, José
Resumen
Se realiza una recopilación de los modelos de enfriamiento más utilizados en el algoritmo de recocido simulado. Se muestra una comparación del rendimiento de los modelos en el contexto del problema combinatorio de particionamiento de datos cuantitativos. Además, se propone un modelo empírico alternativo para acelerar el modelo geométrico, el cual es el más comúnmente utilizado en la práctica.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación superior, formación de pregrado, formación de grado | Formación en posgrado
Idioma
Revisado por pares
Formato del archivo
Volumen
16
Número
2
Rango páginas (artículo)
1-14
ISSN
16590643
Referencias
[1] Aarts, E. & Korst, J. (1990). Simulated annealing and boltzmann machines: A stochastic approach to combinatorial optimization and neural computing. John Wiley & Sons, Chichester. [2] Aarts, E.; Korst, J. & Laarhoven, P. (1997). Local search in combinatorial optimization. John Wiley & Sons Ltd., New York. [3] Aarts, E. & Van Laarhoven, P. (1985). “Statistical cooling: ageneral approach to combinatorial optimization problems”, Philips Journal of Research 40(1): 193226. [4] Abbass, H.; Sarker, R. & Newton, C. (2002). Data mining: A heuritic approach. Idea Group Publishing, Hershey. [5] Anagnostopoulos, A.; Michel, L. & Van Hentenryck, P. (2006). “Simulated annealing based wireless sensor network localization”, Journal of Scheduling 9: 177193. [6] Anderson, H. & McGeehan, J. (1994). “Optimizing microcell base station locations using simulated annealing techniques”, en Vehicular Technology Conerence, IEEE, Reino Unido. [7] Atiqullah, M. (2004). “An efficient simple cooling schedule for simulated annealing”, en: A. Laganá; M. Gavrilova; V Kumar; Y Mun; C. Tan & O. Gervasi (Eds.), Computational Science and Its Applications ICCSA 2004, Springer Berlin Heidelberg, Assisi, Italy. [8] Babu, P. & Murty, N. (1994). “Simulated annealing for selecting optimal initial seeds in the k-means algorithm”, Indian Journal Pure and Applied Mathematics 25(ly2): 8594. [9] Bandyopadhyay, S.; Saha, M.; Maulik, U. & Deb, K. (2008). “A simulated annealing- based multiobjective optimization algorithm: Amosa”, Transactions on Evolutionay Computation 12(3): 269283. [10] Barradas, N.; Jeynes, C. & Webb, R. (1997). “Simulated annealing analysis of rutherford backscattering data”, Applied Physics Letters 71(2): 291293. [11] Bernábe, M.; Espinosa, J. & Ramírez, J. (2009). “Evaluación de un algoritmo de recocido simulado con superficies de respuestas”, Revista de Matemática: Teori0ay Aplicaciones 16(1): 159177. [12] Cohn, H. & Fielding, M. J. (1999). “Simulated annealing: Searching for an optimal temperature schedule”, SIAM Journal On Optimization 9(3): 779802. [13] , D. (1990). “An improved annealing scheme for the qap”, European Journal of Operational Research 46(1): 93100. [14] Connolly, D. (1992). “General purpose simulated annealing”, Journal of the Operational Research Society 43(5): 495505. [15] Cortez, P.; Cerdeira, A.; Almeida, F.; Matos, T. & Reis, J. (2009). “Modeling wine preferences by data mining from physicochemical properties”, Decision Support Systems 47(1): 547533. [16] de los Cobos, S.; Goddard, J.; Gutiérrez, M. & Martínez, A. (2010). Búsqueda y exploración estocástica. México Editorial CBI, México D.F. [17] , A. & Aarts, E. (1991). “Global optimization and simulated annealing”, Mathematical Programming 50(1): 367393. [18] Fidanova, S. (2006). “Simulated annealing for grid scheduling problem”, en International Symposium on Modern Computing, IEEE Computer Society, Bulgaria. [19] Geman, S. & Geman, D. (1984). “Stochastic relaxation, gibbs distributions, and the [20] Hajek, B. (1988). “Cooling schedules for optimal annealing”, Mathematics of Operations Research 13: 311329. [21] Johnson, D.; Aragon, C.; McGeoch, L. & Schevon, C. (1989). “Optimization by simulated annealing: an experimental evaluation; part i, graph partitioning”, Operations Research Society of America 37(6): 865892. [22] Kannan, A.; Mao, G. & Vucetic, B. (2006). “Simulated annealing based wireless sensor network localization”, Journal of Computers 1: 1522. [23] Kim, D.; Kim, K.; Jang, W. & Chen, F. (2002). “Unrelated parallel machine schedu- ling with setup times using simulated annealing”, Robotics and Computer Integrated Manufacturing 18: 223231. [24] Kirkpatrick, S.; Gellat, C. & Vecchi, M. (1983). “Optimization by simulated annealing”, Science 220(4598): 671680. [25] Lundy, S. & Mees, A. (1986). “Convergence of an annealing algorithm”, Mathematical programming 34(1): 111124. [26] Mesa, G. (2007). “Cadenas de markov, una sencilla aplicación”, Revista Memorias 5(9). [27] Osman, I. & Christofides, N. (1994). “Capacitated clustering problems by hybrid simulated annealing and tabu search”, International Transactions in Operational Research 1(3): 317336. [28] Phillip, A.; Della-Marta, P.; Jacobeit, J.; Fereday, D.; Jones, P.; Moberg, A. & Wanner, H. (2007). “Long-term variability of daily north atlantic?european pressure patterns since 1850 classified by simulated annealing clustering”, Journal of Climate 20(1): 40654095. [29] Rutembar, R. (1989). “Simulated annealing algorithms: an overview”, IEEE Circuits and Devices Magazine 5: 1926. [30] Svergun, D. (1999). “Restoring low resolution structure ofbiological macromolecules from solution scattering using simulated annealing”, Biophysical Journal 76: 28792886. [31] Talbi, E. (2009). Metaheuristics: From design to implementation. John Wiley & Sons, New Jersey. [32] Van Laarhoven, P.; Aarts, E. & Lenstra, J. K. (1992). “Job shop scheduling by simulated annealing”, Operations Research 40(1): 113125. [33] Voˆrechovský, M. & Novák, D. (2009). “Correlation control in small-sample monte carlo type simulations i: Asimulated annealing approach”, Probabilistic Engineering Mechanics 24: 452462. [34] Wong, K. & Fung, C. (1993). “Simulated annealing based economic dispatch algorithm”, Generation Transmission and Distribution 140: 509515. [35] Wong, K. & Yin-Wa-Wong, S. (1996). “Combined genetic algorithm/simulated an- nealing/fuzzy set approach to short-term generation scheduling with take-or-pay fuel contract”, Transactions on Power Systems 11: 128136. [36] Zhu, Y.; Wen, H. & Xu, Z. (2000). “Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated annealing algorithm”, Chemical Engineering Science 55(1): 34513459.