Análisis ontosemiótico de una lección sobre la suma y la resta
Tipo de documento
Autores
Lista de autores
Godino, Juan D., Font, Vicenç y Wilhelmi, Miguel R.
Resumen
En este trabajo aplicamos algunas nociones del enfoque ontosemiótico de la cognición e instrucción matemática al análisis de una lección sobre la suma y la resta de un libro de 5o grado de educación primaria del estado español. La finalidad es doble: (1) ilustrar la técnica de análisis de textos matemáticos propuesta por el enfoque ontosemiótico de la cognición matemática y (2) identificar criterios de idoneidad de unidades didácticas para el estudio de las estructuras aditivas en educación primaria. Los resultados obtenidos pueden ser de utilidad para la formación de profesores de matemáticas.
Fecha
2006
Tipo de fecha
Estado publicación
Términos clave
Formación | Operaciones aritméticas | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
9
Número
Extraordinario 1
Rango páginas (artículo)
131-155
ISSN
16652436
Referencias
Brousseau, B. (1997). Theory of Didactical Situations in Mathematics. Dordrecht: Kluwer. Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage. Contreras A., Font, V., Luque, L. y Ordóñez, L. (2005). Algunas aplicaciones de la teoría de las funciones semióticas a la didáctica del análisis. Recherches en Didactique des Mathématiques, 25(2), 151–186. Ferrero, L. y cols. (1999). Matemáticas 5. Serie Sol y Luna. Anaya. Font, V. y Ramos, A. B. (2005). Objetos personales matemáticos y didácticos del profesorado y cambio institucional. El caso de la contextualización de funciones en una Facultad de Ciencias Económicas y Sociales. Revista de Educación, 338, 309-346. Godino, J. D. y Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos. Recherches en Didactique des Mathématiques, 14(3), 325–355. Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématique, 22(2/3), 237–284. Godino, J. D., Batanero, C. y Roa, R. (2005). An onto-semiotic analysis of combinatorial problems and the solving processes by university students. Educational Studies in Mathematics, 60, 3–36. Godino, J. D., Wilhelmi M. R. y Bencomo, D. (2005). “Suitability criteria for a mathematical instruction process. A teaching experience with the function notion”. Mediterranean Journal for Research in Mathematics Education, 4.2, 1–26. Godino, J. D., Contreras, A. y Font, V. (en prensa). Análisis de procesos de instrucción basado en el enfoque ontológico-semiótico de la cognición matemática. Recherches en Didactique des Mathématiques (aceptado). Hiebert, J., Morris, A. K., y Glass, B. (2003). Learning to learn to teach: An “experiment” model for teaching and teacher preparation in mathematics. Journal of Mathematics Teacher Education, 66, 201–222. Verschaffel, L. y De Corte, E. (1996). Number and arithmetic. En A. J. Bishop et al. (eds.), International Handbook of Mathematics Education (pp. 99-137): Dorchecht: Kluwer A. P. Vygotski, L.S. (1934). El desarrollo de los procesos psicológicos superiores, 2a edición. Barcelona, ESP: Crítica-Grijalbo, 1989. Wittgenstein, L. (1953). Philosophical investigations. N. York, Macmillan.