Las ideas fundamentales de probabilidad en el razonamiento de estudiantes de bachillerato
Tipo de documento
Autores
Lista de autores
Sánchez, Ernesto y Valdez, Julio
Resumen
El objetivo de este trabajo es explorar las inferencias que los estudiantes de bachillerato formulan a partir de su conocimiento de las interpretaciones frecuencial y clásica de probabilidad. Se describen y analizan los razonamientos de 30 estudiantes del 12o grado, quienes cursaban la materia de Probabilidad y Estadística II. La recolección de datos se lleva a cabo mediante tres versiones de un cuestionario en los que se pide hacer predicciones y estimar probabilidades. El análisis de las respuestas revela la tendencia de los estudiantes al cálculo de probabilidades, mayormente apoyados en razonamientos inadecuados en los que intervienen las ideas de variabilidad, aleatoriedad e independencia. Dichos razonamientos son descritos en una jerarquía con la finalidad de informar sobre las trayectorias de los estudiantes. Con base en este resultado, se sugiere que el primer objetivo en la enseñanza de la probabilidad debe ser el desarrollo de un razonamiento adecuado sobre estas ideas.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
11
Rango páginas (artículo)
127-143
ISSN
22544313
Referencias
Batanero, C. (2016). Understanding randomness: challenges for research and teaching. En K. Krainer y Naďa Vondrová (Eds.), Proceedings of the Ninth Congress of European Research in Mathematics Education, CERME 9 (pp. 34-49). Praga: ERME. Batanero, C., Arteaga, P., Serrano, L., & Ruiz, B. (2014). Prospective primary school teachers’ perception of randomness. En E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking; Presenting plural perspectives (pp. 345-366). Dordrecht: Springer. Batanero, C., Green, D., & Serrano, L. (1998). Randomness, its meanings and educational implications. International Journal of Mathematical Education in Science and Technology, 29(1), 113-123. Batanero, C., & Serrano, L. (1999). The meaning of randomness for secondary school students. Journal for Research in Mathematics Education, 30(5), 558-567. Cañizares, M. (1997). Influencia del razonamiento proporcional y combinatorio y de creencias subjetivas en las intuiciones probabilísticas primarias. Tesis Doctoral. Universidad de Granada. Carnap, R. (1945). The two concepts of probability: The problem of probability. Philosophy and Phenomenological Research, 5(4), 513–532. Chernoff, E. (2009). Sample space partitions: an investigative lens. Journal of Mathematical Behavior, 28, 19–29. Falk, R. (1979). Revision of probabilities and the time axis. Proceedings of the Third International Conference for the psychology of Mathematics Education (pp. 64-66). Warwick, UK: PME group. Feller, W. (1950). An introduction to probability theory and its applications.New York: John Willey and Sons. Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. Dordrecht: Reidel. Gal, I. (2005). Towards “probability literacy” for all citizens: building blocks and instructional dilemmas. En G. A. Jones (Ed.). Exploring probability in school: Challenges for teaching and learning (pp. 39–63). Nueva York: Springer. Green, D. (1993). Data analysis: What research do we need? En L. Pereira-Mendoza (Ed.), Introducing data analysis in the schools: Who should teach it? (pp. 219-239). Voorburg, The Netherlands: International Statistical Institute. Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6, 187-205. Ireland, S., & Watson, J. (2009). Building a connection between experimental and theoretical aspects of probability. International Electronic Journal of Mathematics Education, 4(3), 339–370. Jabareen, J. (2009). Building a conceptual framework: Philosophy, definitions, and procedure. International Journal of Qualitative Methods, 8(4), 49-62. Jones, G., Langrall, C., & Mooney, E. (2007). Research in probability: Responding to classroom realties. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 909-955). Nueva York: Macmillan. Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. Cognitive Psychology, 3, 430–454. Kelly, I., & Zwiers, F (1986). Mutually exclusive and Independence: Unravelling basic misconceptions in probability theory. En Davidson & J. Swift (Eds.) Proceedings of the Second International Congress on Teaching Statistics (96-100). Victoria, Canada. Konold, C. (1989). An outbreak of belief in independence? En C. Maher, G. Goldin & B. Davis (Eds.), Proceedings of the 11th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 203- 209). Rutgers NJ: Rutgers University Press. Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N., & Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, 13, 68–86. Konold, C., Pollatsek, A., Well, A., Lohmeier, J., & Lipson, A. (1993). Inconsistencies in students’ reasoning about probability. Journal for Research in Mathematics Education, 24(5), 392-414. Lecoutre, M., Rovira, K., Lecoutre, B., & Poitevineau, J. (2006). People’s intuitions about randomness and probability: An empirical study. Statistics Education Research Journal, 5(1), 20-35. Lee, H., Angotti, R., & Tarr, J. (2010). Making comparisons between observed data and expected outcomes: Students’ informal hypothesis testing with probability simulation tools. Statistics Education Research Journal, 9(1), 68-96. Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82-105. Metz, K. (1998). Emergent understanding and attribution of randomness: comparative analysis of the reasoning of primary grade children and undergraduates. Cognition and Instruction, 16(3), 285-365. Moore, D. (1990). Uncertainty. En L. A. Steen (Ed.), On the shoulders of giants (pp. 95-138). Washington D. C.: National Research Council. Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. Nueva York: W.W. Norton. Prodromou, T. (2012). Connecting experimental probability and theoretical probability. ZDM Mathematics Education, 44, 855 – 868. Sánchez, E., García, J., & Medina, M. (2014). Niveles de razonamiento y abstracción de estudiantes de secundaria y bachillerato en una situación-problema de probabilidad. Avances de Investigación en Educación Matemática, 6, 5-23. Shaughnessy, J. (1992). Research in probability and statistics: Reflections and directions. En D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 465-494). Reston, Va: National Council of Teachers of Mathematics. Shaughnessy, J. (1997). Missed opportunities in research on the teaching and learning of data and chance. En F. Biddulph & K. Carr (Eds.), Proceedings of the 20th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 6-22). Rotorua, Nueva Zelanda: University of Waikato. Shaughnessy, J., Watson, J., Moritz, J., & Reading, C. (1999). School mathematics students' acknowledgment of statistical variation. Paper presented at the Research Pre-session of the 77th Annual meeting of the National Council of Teachers of Mathematics. San Francisco, CA: NCTM. Stohl, H., & Tarr, J. E. (2002). Developing notions of inference using probability simulation tools. Journal of Mathematical Behavior, 21, 319-337. Truran, K., & Truran, J. (1999). Are dice independent? Some responses from children and adults. En Zaslavsky O. (Ed.), Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Instruction, (Vol. 4, pp. 289–296). Haifa: Israeli Institute of Technology. Watkins, A. (1993). Students can compute, but can they reason? Research and Teaching in Developmental Education, 10(1), 85-94. Watson, J., & Kelly, B. (2004). Expectation versus variation: Students’ decision making in a chance environment. Canadian Journal of Science, Mathematics and Technology Education, 4(3), 371-396. Watson, J., Kelly, B., Callingham, R., & Shaughnessy, M. (2003). The measurement of school students' understanding of statistical variation. International Journal of Mathematical Education in Science and Technology, 34(1), 1-29.