Optimización, ¿sin cálculo? Una aplicación de la desigualdad de las medias aritmética y geométrica, con geometría dinámica
Tipo de documento
Autores
Lista de autores
Ibarra, Víctor y Trujano, Guillermo
Resumen
Hay muchas situaciones en las que se tienen recursos escasos y uno desea optimizar una actividad o situación. Maximizar: ganancias, ingresos, rendimientos. Minimizar: costos, tiempo de entrega, nivel de inventario. Y, en ambos casos, cumplir con algunas condiciones. Se denominan problemas de optimización con restricciones. Presentamos un problema, que permite mostrar una metodología útil en la resolución de algunos problemas de optimización con restricciones. El objetivo es doble, por un lado, aplicar conocimientos básicos y por otro, comentar sobre el uso de recursos computacionales y la potencialidad que tienen en el apoyo en la enseñanza-aprendizaje de matemáticas y ciencias en general.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado | Educación técnica, educación vocacional, formación profesional
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Editores (actas)
Lista de editores (actas)
Valbuena, Sonia, Vargas, Leonardo y Berrío, Jesús David
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
491-493
ISBN (actas)
Referencias
Arya, J., Lerdner, W. e Ibarra, V. (2005). Matemáticas aplicadas a la Administración y a la Economía. Prentice Hall. México Peresinni, A., Sullivan, F. y Uhl, J. (1988). The mathematics of nonlinear programming. Springer Verlag. USA. Sominskii, I.S. (1990). El método de la inducción matemática. Editorial LIMUSA. México. Thomas, G. (2012). Cálculo: Una variable. Pearson Editorial. México. Thomas, G. (2010). Cálculo: Varias variables. Pearson Editorial. México.
Proyectos
Cantidad de páginas
3