Ejemplo de perspectivas didácticas AD HOC en problemas específicos de enseñanza y aprendizaje de la matemática
Tipo de documento
Autores
Lista de autores
Morales, Astrid y Parraguez, Marcela
Resumen
Presentamos un análisis desde una postura didáctica de distintos hechos didácticos específicos, a través de ejemplos. El primero se sitúa en el estudio del concepto de dimensión de un espacio vectorial real de dimensión finito, bajo un enfoque cognitivo donde se utilizan la teoría de los modos de pensamiento de Anna Sierpinska como marco teórico y un diseño metodológico de estudio de caso. El segundo ejemplo aborda, bajo el enfoque de la aproximación Socioepistemológica, el tema de cómo ciertos elementos que son tratados en las ecuaciones diferenciales ordinarias suelen presentarse en forma desarticulada con una mirada al discurso matemático escolar y poniendo atención en cómo la modelación-graficación ayuda en la construcción de conocimiento.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Ecuaciones e inecuaciones diferenciales | Epistemología | Gráfica | Modelización
Enfoque
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Memoria de la XIV Escuela de Invierno en Matemática Educativa
Editores (actas)
Lista de editores (actas)
Sosa, Landy, Rodríguez, Ruth y Aparicio, Eddie
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
175-183
ISBN (actas)
Referencias
Campos, C. (2003). Argumentaciones en la transformación de las funciones cuadráticas. Una aproximación socioepistemológica. Tesis de Maestría. Departamento de Matemática Educativa. Cinvestav-IPN, México Cantoral, R. y Farfán, R. (2003). Matemática Educativa: Una visión de su evolución. Revista Latinoamericana de Matemática Educativa, 6(1), 27 – 40. Cordero, F y Solís, M. (2001). Las gráficas de las Funciones como una Argumentación del Cálculo. Grupo Editorial iberoamericana. Cen, C. (2010). Los funcionamientos y formas de las gráficas en los libros de texto: Una práctica institucional en el bachillerato. Revista Latinoamericana de Investigación en Matemática Educativa, 13(2). Cordero, F., Mena, J., Montalto (2010). Il ruolo Della giustificazione funzionale in una situazione di risignificazione dell’asintoto. Línsegnemento Della matematica e Delle scienze integrate, 33 B(4), 457-488. Cordero, F. (2008). El uso de las gráficas en el discurso del cálculo escolar. Una visión socioepistemológica. En R. Cantoral, O. Covián, R. M. Farfán, J. Lezama & A. Romo (Ed.), Investigaciones sobre enseñanza y aprendizaje de las matemáticas: Un reporte Iberoamericano (pp. 285-309). México, D. F.: Díaz de Santos-Comité Latinoamericano de Matemática Educativa. A. C. Cordero, F. (2001). La distinción entre construcciones del cálculo. Una epistemología a través de la actividad humana. Revista Latinoamericana de Investigación en Matemática Educativa, 4(2), 103-128. Cordero, F y Solís, M. (2001). Las gráficas de las Funciones como una Argumentación del Cálculo. Grupo Editorial iberoamericana. Dorier J.-L., Robert, A., Robinet, R. y Rogalski, M. (1997). L’Algèbre Linéaire : L’obstacle du Formalisme à travers diverses recherches de 1987 à 1995. En J.-L. Dorier (Ed), L’Enseignement de l’Algèbre Linéaire en Question (pp. 105-147), Grenoble : La Pensée Sauvage Éditions. Dorier, J. L. Sierpinska A. (2001). Research into the teaching and learning of linear algebra. In Derek Holton (Ed.). The teaching and Learning of Mathematics at University Level: An ICMI Study. Kluwer Academic Publishers: Netherlands, 255-273. Lara, G. (2007). Categorías de Uso de Gráficas en libros de texto de Mecánica de Fluidos. Tesis de Maestría no publicada, Cinvestav-IPN, México. Morales, A. (2009). Resignificación de la Serie de Taylor en una situación de modelación del movimiento: de la predicción del movimiento a la analiticidad de las funciones. Tesis de doctorado no publicada. CICATA-IPN. México. Parraguez, M. & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and its Applications, 432(8), 2112-2124. Sierpinska A. (1996). Problems related to the design of the teaching and learning process in linear algebra. Research Conference in Collegiate Mathematics Education, Central Michigan University. Sierpinska, A. (2000). On some aspects of students' thinking in linear algebra. En J.-L. Dorier (Ed.). On the Teaching of Linear Algebra. Kluwer Academic Publishers, 209-246. Suárez, L. (2008). Modelación – Graficación, Una categoría para la Matemática Escolar. Resultados de un estudio socioepistemológico. Tesis doctoral. México: Cinvestav-IPN.