Duval, Raymond; Thadeu, Méricles (2012). Registros de representação semiótica e funcionamento cognitivo do pensamento. REVEMAT: Revista Eletrônica de matemática, 7(2), pp. 266-297 .
![]()
| PDF - Versión Publicada Disponible bajo la licencia Creative Commons No Comercial Sin Derivar. 591Kb |
URL Oficial: https://periodicos.ufsc.br/index.php/revemat
Resumen
As transformações de representações em outras transformações semióticas estão no coração da atividade matemática. As dificuldades dos alunos para compreender matemática surgem por conta da diversidade e complexidade dessas transformações. Para estudar esta complexidade, as representações semióticas devem ser analisadas, não a partir dos objetos ou dos conceitos matemáticos que representam, mas a partir do funcionamento representacional que é próprio do registro no qual são produzidas. Neste artigo, mostra-se que um registro é um campo de variação de representação semiótica em função de fatores cognitivos que lhe são próprios. Tomam-se dois exemplos de registro, o registro das representações gráficas e o registro das figuras geométricas, descrevem-se todas as variações que são visualmente pertinentes para que se perceba, respectivamente, uma função afim e uma relação de homotetia. Toda resolução de problema que mobiliza um ou outro desses objetos exige duas coisas: (1) Capacidade para produzir ou reconhecer, espontaneamente, não importa qual a representação produzida nesses dois campos de variação; (2) Coordenação, em cada um desses campos de variação, em outro campo de variação: o registro da expressão algébrica das relações para visualizar as funções ou o registro de uma fração para a relação das configurações geométricas. Neste artigo, limita-se à primeira exigência. Analisar, em termos de registro a ser utilizado, nas atividades matemáticas e no funcionamento cognitivo requerido para que o aluno seja capaz de fazer tais atividades por si mesmo, apresenta um triplo interesse para pesquisa e para o ensino. Isto permite distinguir e classificar todos os sistemas semióticos que são utilizados em matemática para fim de cálculo, de raciocínio e de exploração heurística intuitiva. Na sequência, permite separar, na análise da resolução de um problema, dois tipos de transformação de representação semiótica que são radicalmente diferentes: as conversões e os tratamentos. Enfim, permite ainda compreender porque o entendimento dos objetos e dos conceitos em matemática começa, somente, no momento em que o aluno é capaz de mobilizar e de coordenar espontaneamente dois registros de representação para um mesmo objeto. Obtêm-se, assim, as bases de um modelo cognitivo de funcionamento do pensamento que leva em conta todos os problemas suscitados no ensino de matemática.
Tipo de Registro: | Artículo |
---|---|
Términos clave: | 06. Aprendizaje > Procesos cognitivos > Razonamiento 11. Educación Matemática y otras disciplinas > Fundamentos de la Educación Matemática > Semiótica 06. Aprendizaje > Cognición > Dificultades |
Nivel Educativo: | Educación Secundaria Media (17 y 18 años) Educación Secundaria Básica (13-16 años) |
Código ID: | 25344 |
Depositado Por: | Monitor Funes 8 |
Depositado En: | 12 May 2022 15:32 |
Fecha de Modificación Más Reciente: | 12 May 2022 15:32 |
Valoración: |
Personal del repositorio solamente: página de control del documento