El infinito en matemáticas
Tipo de documento
Autores
Lista de autores
Salat, Ramón Sebastián
Resumen
En este trabajo se presenta la evolución del concepto de infinito y algunas relaciones con otros desarrollos de las matemáticas. También presento el hecho de que de varios axiomas intuitivos podemos obtener proposiciones que ya no nos resultan tan evidentes; esto se sustenta con datos experimentales. Discuto la relación entre la igualdad 0.999...=1 y el concepto de infinito; y la posibilidad de usar el concepto de infinitesimal en cálculo. A partir de esta información, presento algunas consideraciones de importancia para la didáctica de las matemáticas.
Fecha
2011
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
77
Rango páginas (artículo)
75-83
ISSN
18871984
Referencias
Aristóteles (1995, 384-322 A.C.). Física. Traducción y notas: Guillermo R. de Echandía. Madrid: Planeta de Agostini. Editorial Gredos, S.A. Biblioteca Clásica Gredos (pp 91-111). Aristóteles (2009, 384-322 A.C.). Metafísica. Biblioteca Virtual Miguel de Cervantes. Libro 11, capítulo X. http://www.cervantesvirtual.com, 1 de agosto de 2009. Bolzano, B.(1995, 1851). Las paradojas del infinito. Mathema. México: Servicios Educativos de la Facultad de Ciencias, UNAM (pp 64-66). Cantor, G.(1955) . Contributions to the Founding of the Theory of Transfinite Numbers. Republication of the original translation of 1915. New York : Dover Publication, Inc. Galilei, G. (1981, 1638). Consideraciones y Demostraciones Matemáticas sobre dos Nuevas Ciencias. Madrid: Editorial Nacional. Henle, J.M.; Kleinberg, E.M. (1979). Infinitesimal Calculus. MIT Press. Hilbert, D. (1967, 1926). Über das Unendliche, Mathematische Annalen, 95: 161-90. Lecture given Münster, 4 June 1925. English translation in van Heijenoort (1967, pp 367-392). Hilbert, D. (1902). Foundations of Geometry. University of Illinois. The Open Court Publishing Co. Authorized translation by E.J. Towsend. Imaz, C. (2001). ¿Qué pasa con el infinito? Avance y Perspectiva, 20, pp. 305-311. Laugwitz, V.D. (1968). Eine nichtarchimedische Erwiterung angeordneter Körper. Math. Nachr. 37, pp. 222-236. Irvine, A.D. (2009). Russell's Paradox, The Stanford Encyclopedia of Philosophy (Summer 2009 Edition), Edward N. Zalta (ed.), http://plato.stanford.edu/archives/ sum2009/entries/ Russellparadox/. Martinón, A. (2006). La cumbre del imposible matemático. Números [en línea], 64. Recuperado el 15 de mayo de 2010, de http://www.sinewton.org/numeros/. Robinson, A. (1966). Non-estándar Analysis. Holanda: North Holland. Salat, R. (1993). Elaboración, prueba y análisis de un modelo infinitesimal del Cálculo. Tesis doctoral. México: CINVESTAV.