Moving beyond descriptive models: research issues for design and implementation
Tipo de documento
Autores
Lista de autores
Bergman, Jonas y Doerr, Helen M.
Resumen
In this paper, we draw on a models and modeling perspective to describe the design of a sequence of tasks, known as a model development sequence, that has been used to research the teaching and learning of mathematics. A central research goal of a models and modeling perspective is the development of principles for the design of sequences of modeling tasks and for the teaching of such sequences. We extend our earlier research by elaborating how a model development sequence can be used to support students in developing models that are not only descriptive but also have explanatory power when connected to existing mathematical models. In so doing, we elaborate language issues about representations and context as well as the implementation strategies used by the teacher.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Contextos o situaciones | Investigación de diseño | Modelización | Tareas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
17
Rango páginas (artículo)
5-20
ISSN
22544313
Referencias
Ärlebäck, J. B., & Doerr, H. M. (2015). Preserving students’ independence by encouraging students self-evaluation. In H. Silfverberg, T. Kärki, & M. S. Hannula (Eds.), Proceedings of NORMA14 (pp. 257–266). Turku, Finland: The Finnish Research Association for Subject Didactics. Ärlebäck, J. B., & Doerr, H. M. (2018). Students’ interpretations and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM Mathematics education, 50(1–2), 187–200. Ärlebäck, J. B., Doerr, H. M., & O’Neil, A. H. (2013). A modeling perspective on interpreting rates of change in context. Mathematical Thinking and Learning, 15(4), 314–336. Barquero, B., Bosch, M., & Gascón, J. (2013). The ecological dimension in the teaching of mathematical modelling at university. Recherches en Didactique des Mathématiques, 33(3), 307–338. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 73–99). Cham, Switzerland: Springer. Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32, 9–13 Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage Publications. Doerr, H. M. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI Study (pp. 69–78). New York: Springer. Doerr, H. M, Ärlebäck, J. B., & Stanic, A. C. (2014). Design and effectiveness of modelling-based mathematics in a summer bridge program. Journal of Engineering Education, 103(1), 92–114. Doerr, H. M., Ärlebäck, J. B., & Misfeldt, M. (2017). Representations of modelling in mathematics education. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.). Mathematical modelling and applications. Crossing and researching boundaries in mathematics education (pp. 71–81). Cham, Switzerland: Springer Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110–136. Doerr, H. M., & Lesh, R. A. (2011). Models and modelling perspectives on teaching and learning mathematics in the twenty-first century. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling, (pp. 247–268). New York: Springer. Hestenes, D. (2010). Modeling theory for math and science education. In R. A. Lesh, P. Galbraith, C. Haines, & A. Hurford (Eds). Modeling students’ mathematical modeling competencies. ICTMA 13 (pp. 13–41). New York: Springer. Lesh, R. A., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. (2003). Model development sequences. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning and teaching (pp. 35–58). Mahwah, NJ: Lawrence Erlbaum Associates. Lesh, R. A., & Doerr, H. M. (Eds.) (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum Associates. Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In R. A. Lesh, & A. Kelly (Eds.), Handbook of research design in mathematics and science education (pp. 591– 646). Mahwah, NJ: Lawrence Erlbaum Associates. Lingefjärd, T., & Meier, S. (2010). Teachers as managers of the modelling process. Mathematics Education Research Journal, 22(2), 92-107. Maass, K. (2011). How can teachers’ beliefs affect their professional development? ZDM Mathematics Education, 43(4), 573–586. Niss, M. (2015). Prescriptive modelling. Challenges and opportunities. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.). Mathematical modeling in education research and practice. Cultural, social and cognitive influences. Cham, Switzerland: Springer. Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.- W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York: Springer. Pollak, H. O. (1979). The interaction between mathematics and other school subjects. New trends in mathematics teaching (Vol. 4, pp. 232–248). Paris: UNESCO. Rosa, M, & Orey, D. (2015). Social-critical dimensions of mathematical modelling. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.). Mathematical modeling in education research and practice. Cultural, social and cognitive influences. Cham, Switzerland: Springer. Temple, C., & Doerr, H. M. (2012). Developing fluency in the mathematical register through conversation in a tenth-grade classroom. Educational Studies in Mathematics, 81(3), 287–306. Wake, G. (2011). Teachers’ professional learning: Modelling at the boundaries. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 653–662). New York: Springer.