Trayectorias iniciales de formación de profesores. El caso de las transformaciones geométricas
Tipo de documento
Autores
Lista de autores
Thaqi, Xhevdet y Giménez, Joaquim
Resumen
Se desarrolla un estudio empírico con los estudiantes para futuros profesores de primaria en dos contextos diferentes, en España y Kosovo. Se ha empleado una práctica didáctica sobre aprender a enseñar las transformaciones geométricas en educación primaria para construir narrativas de los estudiantes sobre su experiencia de aprender a enseñar las transformaciones geométricas. El estudio reveló que existen diversas escrituras culturales para el aprender a enseñar las transformaciones geométricas en los dos grupos de participantes de la investigación.
Fecha
2014
Tipo de fecha
Estado publicación
Términos clave
Empírica | Inicial | Libros de texto | Transformaciones geométricas
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Referencias
Andrews, P. (2009). The cultural location of teachers’ mathematical knowledge: Another hidden variable in research on mathematical knowledge for teaching? In M. Joubert (Ed.), Proceedings of the British Society for Research into Learning Mathematics (pp. 99-118). Retrieved from: www.maths-ed.org.uk/mkit/Andrews_MKiT6.pdf Bkouche, R. (1992). De la géométrie et des transformations. Repères IREM, 4, 135-158. Bulf, C. (2008). Ètude des effets de la symétrie axiale sur la conceptualisation des isométries planes et sur la nature du travail géométrique au collège. Doctoral dissertation, Université Paris Diderot. Burges, C., Gimenez, J. ( 2006). Las trayectorias hipotéticas de formación inicial (TRHIFI) como instrumento para el análisis del desarrollo profesional. En M.C. Penalva, I. Escudero, D. Barba (coords), Conocimiento, entornos de aprendizaje y tutorizacion para la formación del profesorado de matemáticas (pp. 49-67). Granada: Proyecto Sur. Desmond, N.S., (1997). The geometric content knowledge of prospective elementary teachers. Doctoral dissertation, University of Minnesota. Edward, L. & Zazkis, R., (1993). Transformation geometry: Naive ideas and formal embodiments. Journal of computers in mathematics and science teaching, 12(2), 121-145. Girnat, B., (2008). The necessity of two different types of applications in elementary geometry. Proceedings for CERME. Lyon. Retrieved from: http://www.inrp.fr/publications/edition-electronique/cerme6/wg5.pdf Godino, J. D. y Ruiz, F. (2003). Geometría y su didáctica para maestros. Departamento de Didáctica de las Matemáticas. Retrieved from: http://www.ugr.es/local/jgodino/ Gravemeijer, K., (2003). From a different perspective: building on student´s informal knowledge. In R. Lehrer & D. Chazan (Eds), Designing Learning Environments for Developing Understandings of Geometry and Space (pp. 45-46). Dordrecht: Lawrence Erlbaum Ass. Harper, J. (2003). Enhancing elementary pre-service teachers’ knowledge of geometric transformations through the use of dynamic geometry computer software. In C. Crawford et al. (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2003 (pp. 2909-2916). Chesapeake. Hollebrands, K. (2003). High school students’ understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behaviour, 22(1), 55-72. doi: 10.1016/S0732-3123(03)00004-X Hoyos, V. (2006). Functionalities of technological tools in the learning of basic geometrical notions and properties. In C. Hoyles, J-B Lagrange, L.H. Son, and N. Sinclair (Eds.), Proceedings of 17th ICMI Study conference, Technology Revisited. Hanoi: Hanoi University of Technology. Jahn A.P. (1998). Des transformations des figures aux transformations ponctuelles : étude d’une séquence d’enseignement avec Cabri-Géomètre – Relations entre aspects géométriques et fonctionnels en classe de Seconde. Doctoral dissertation, Université Joseph Fourier, Grenoble I. Jaime, A.; Gutiérrez, A. (1995). Guidelines for Teaching Plane Isometries in Secondary School. The Mathematics Teacher, 88(7), 591-597. Jaworski B. (2006). Theory and Practice in Mathematics Teaching Development: critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 9(2), 187-211. doi: 10.1007/s10857-005-1223-z Kuzniak, A. and Vivier, L. (2008). A French look on the greek geometrical working space at secondary school level (p. 686). Proceedings of the CERME, working group 6. Lyon. France. Lefèvre, F., Lefèvre, A.M.C., Teixeira, J.J.V. (2000). Discurso do sujeito coletivo: uma nova abordagem metodológica em pesquisa qualitativa. Caxias do Sul: EDUCS. Leung, K. C. I. et al. (2008). The competence of potential mathematics teachers of Hong Kong: A comparative perspective. Discussion Group 14 of the 11th International Congress on Mathematical Education. Monterrey, Mexico. Llinares, S. & Krainer, K. (2006). Mathematics (student) teachers and teachers educators as learners. In A. Gutierrez & P. Boero (Eds.), Handbook on research in Psychology of Mathematics Education (pp. 329-459). Rotterdam: Sense Publishers. Olkun, S. et al (2009). Comparing and Enhancing Spatial Skills of Pre-service Elementary School Teachers in Finland, Taiwan, USA, and Turkey. In Procedia - Social and Behavioral Sciences Volume 1, Issue 1 (pp. 1545-1548). World Conference on Educational Sciences. Nicosia, North Cyprus. Pawlik, B. (2004). On false convictions concerning geometric transformations of the plane in mathematics students’ reasoning. Proceedings of the ICME-10. Copenhague. Retrieved from: www.icme-organisers.dk/tsg10/articulos/Pawlik_30_updated_paper.doc Pepin, B. (2000). Reconceptualising comparative education: the case of international studies in mathematics education. Pedagogy, Culture & Society, 8(3), 379-388. doi: 10.1080/14681360000200100 Stigler, J. W., Gallimore, R., & Hiebert, J. (2000). Using video surveys to compare classrooms and teaching across cultures: examples and lessons from the TIMSS video Studies. Educational Psychologist, 35, 87-100. doi: 10.1207/S15326985EP3502_3 Tall, D. O. & Vinner, S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity. Educational Studies in Mathematics, 12, 151-169. doi: 10.1007/BF00305619 Thaqi, X. (2009). Aprender a enseñar transformaciones geométricas en Primaria desde una perspectiva cultural. Doctoral dissertation, Barcelona University. Spain. Tweed, R. G., & Lehman, D. R. (2002). Learning considered within a cultural context: Confucian and Socratic approaches. American Psychologist, 57, 89-99. doi: 10.1037/0003-066X.57.2.89 Williford, H. J. (1972). A study of transformational geometry instruction in the primary grades. Journal for Research in Mathematics Education, (3), 260-271. Yanik, H.B., Flores, A. (2009). Understanding rigid geometric transformations: Jeff's learning path for translation. The Journal of Mathematical Behavior, 28(1), 41-57. doi: 10.1016/j.jmathb.2009.04.003