Panel: investigación en Educación Matemática
Tipo de documento
Autores
Diaz, Juan | Filloy, Eugenio | Gutiérrez, Ángel | Matos, Joao Filipe
Lista de autores
Diaz, Juan, Filloy, Eugenio, Matos, Joao Filipe y Gutiérrez, Ángel
Resumen
El panel de Investigación, celebrado durante las sesiones del I Congreso Iberoamericano de Educación Matemática, contó con las exposiciones de destacados especialistas del campo de la didáctica de la matemática en las cuales se informó del estado de las investigaciones en áreas particulares y se suscitaron debates interesantes con los participantes. Actuó como coordinador el Dr. Juan Diaz Godino, catedrático del Departamento de Didáctica de la Matemática de la Universidad de Granada y director de dicho departamento.
Fecha
1990
Tipo de fecha
Estado publicación
Términos clave
Formación | Investigación acción | Métodos | Reflexión sobre la enseñanza
Enfoque
Nivel educativo
Educación superior, formación de pregrado, formación de grado | Formación en posgrado
Idioma
Revisado por pares
Formato del archivo
Título libro actas
Editores (actas)
Lista de editores (actas)
García, Mercedes
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
164-184
Referencias
Artigue, M. (1989) Ingenierie didactique. Universite Paris VII. Brousseau, G. (1989). La tour de babel. Etuder en Didactique des Mathematiques. Article occacionnel n. 2. IREM de Bordeaux. Chevallard, Y. y Joshua, M.A. (1982). Un exemple d'analyse de la transposition didactique. RDM, Vol 3, n. 2. Steiner, H.G. (1985). Theory of mathematics education (TME): an introduction. For the Learning of Mathematics, 5, 2, 11-17. GALLARDO, A. y ROJANO, T., 1987. Common difficulties in the learning of algebra among children displaying low and medium pre-algebraic proficiency levels, en Bergeron, J.C.; Herscovics, N. y Kieran, C. (ed.), Vol. I, pp. 197-203. GOLDIN, G., 1987. Cognitive representational systems for mathematical problema solving, en Janvier, (ed), pp. 125-145. JANVIER, C. (Editor, J987). Problems of representation in the teaching and learning of mathematics. Laurence Eribraun Associates, Publishers. New Jersey. KAPUT, J.J., 1989. Linking representations in the symbol systems of algebra, en Warner & Kieran, (eds.), pp. 167-194. KIERAN, C. y FILLOY, E., 1989. El aprendizaje del Algebra escolar desde una perspective psicológica. Enseñanza de las ciencias, Vol 7/No. 3, noviembre 1989, Barcelona/Valencia, Espafia. KIRSCHENR, D., 1987. The myth about binary representation in algebra, en Bergeron, J.C., Herscovics, N. y Kieran, C., (eds.), Vol I, pp. 308-315. MATZ, M., 1982. Towards a process model for high school algebra errors. Intelligent Tutoring Systems. D. Seeman y J.S. Brown, Academic Press, pp. 25-50. ROJANO, T. y FILLOY, E. 1989. Cursos para profesores basados en investigaciones recientes sobre didactica del Algebra. Cuadernos de Investigaci6n No. 12, Aho III, octubre, 1989. PNFAPM. Mexico. THOMPSON, P. 19139. Artificial. Intelligence Advanced Technology and Learning and Teaching Algebra, en Research Agenda for Mathematics Education, Vol. 4, pp. 135-161. Bell, A.W.; Costello, J.; Kfichemann, D.E. (1983): A review of research in Mathematical Education, part A: Research on learning and teaching. (Nfer-Nelson: G. Bretaña) Burger, W.F.; Shaughnessy, J.M. (1986): Characterizing the van Hiele levels of developmente in geometry, Journal for Research in Mathematics Education vol 17, pp. 31-48. Burger, W.F. et al. (1986): The van Hiele model: Research update and application in teacher training, en Proceedings of the B. Annual Meeting of the PME-NA, pp. 329-334. Clements, D.H.; Battista, M.T. (1989): A logo-based elementary school geometry curriculum, preprint. De Villiers, M.D. (1987): Research evidence on hierarchical, thinking teaching strategies and the van Hiele theory; Some critical comments (R.U.M.E.U.S.: Stellenbosch, R. de Sudafrica). De Villiers, M.D.; Njisane, R.M. (1987): The development of geometrical thinking among black high school pupils in Kwazulu (Rep. of South Africa), en Proceedings of the 11 International conference of the PME. vol 3, pp. 117-123. Fuys, D.; Geddes, D. & Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents (Journal for Research in Mathematics Education Monograph n°3). (N.C.T.M.: EE.UU.). Gutierrez, A.; Fortuny, J.M.; Jaime, A. (1988): Van Hiele levels and visualization in three dimensions, presentation en el Visualization Topic Group del 6th I.C.M.E., preprint. Gutierrez, A.; Jaime, A. (1987): Estudio de las caracteristicas de los niveles de van Hiele, en Proceedings of the 11 International Conference of the PME vol 3, pp. 131-137. Gutierrez, A.; Jaime, A. (1989): Bibliografia sobre el modelo de razonamiento geometrico de Van Hiele, Snsenanza de las Clenglas vol 7, n°1, pp. 89-95. Hershkowitz, R. (1990): Psychological aspects of learning geometry, en Nesher, P. & Kilpatrick, J. (1990): Mathematics and cognition: A research synthesis by the International Group far the Ravcholoay ef Mathematics Education (Cambridge U.P.: G.B.), pp. 70-95. Hoffer, A. (1979): Geometryl 8 Mode/ VI She universe (addison Wesley: Londres). Jaime, A.; Gutierrez, A. (1989): The learning of plane isometries from the viewpoint of the Van Hiele model, en proceedings gl She 12 Internativaai nonfarm's:1 sts She fl vol 2, pp. 131-138. Jaime, A.; Gutierrez, A. (1990): Study of the degree of acquisition of the van Hiele levels by secondary school students, en proceeding,: cl the 11 International Conference gl the EAR vol 2, pp. 251-258. Jurdak, M. (1989): Van Hiele levels and the Solo taxonomy, en ?rootlet:1=g 21 the ll International Conference 21 the PME vol 2, pp. 155-162. Lesh, R. (1979): Supporting research in mathematics education, en R. Lesh, R. & W. Secede (1979): Some theorical issues in Mathematics admations papers from a research presession (ERIC: EE.UU.), pp. 1-11. Mayberry, J. (1983): The van Hiele levels of geometric thought in undergraduate pre-service teachers, journal for Research in Mathematics Education vol 14, pp. 58-69. Musser, G.L.; Burger, W.F. (1988): Mathematics for elementary teachers: A contemporany approach. (Macmillan: Londres). Olson, A.T.; Kieran, S. (1987): Linking logo, levels and language in mathematics, Mathematics vol 18, pp. 359-370. Orton, R.E. (1987)o Do van Hiele and Piaget belong to the same 'research program"?, en Conference gn learning and teaching geometry: Issues for research And malice, preprint. Senk, S.L. (1985): Research and curriculum development based on the van Hiele model of geometry thought, en Bell, A.R.; Low, B. & Kilpatrick, J. (1985): Theory. research And practice in mathematical education (Shell Centre: G.B.), pp. 351-357. Shumway, R.J., ed. (1980): Research In Mathematics Education. (N.C.T.M.: EE.UU.). Troffers, A. (1987): Three dimensions. (D. Reidel: Dordrecht). Usiskin, Z. (1982): Van Hiele levels And achievement 1n secondary school geometry. (ERIC: EE.UU.). Van Miele, P.M. (1986): Structure And insight. (Academic Press: N. York). Wirszup, I. (1976): Breakthroughs in the psychology of learning and teaching geometry, en Martin, J.L.; Bradnard, D.A. (1976): $Dace And geometry (ERIC: EE.UU.), pp. 75-97. Collis, B. (1987). Sex differences in the association detween secondary school students' attitudes toward Mathematics and toward computers. Journal for Research in Mathematics Education, 18 (5), p. 394-402. Erlwanger, S. (1973). Benny's conception of rules and answers in IPI mathematics. The Journal of Children Mathematical Behavior, 1(2), p. 7-26. Frank, M. (1988). Problem solving and Mathematical beliefs. Arithmetic Teacher, 7(3), p. 32-34. Glencross, M. (1984). Classroom atmosphere and the attitudes of children and their teachers towards Mathematics. Proceedings of the Eight International Conference for PHE, p. 448-456. Herzlich, C. (1972). La representation sociale. In S. Moscovici (Ed.) Introduction a la psycologie sociale, 1. Parisi Larousse. Hoyles, C. (1982). The pupils view of mathematics learning. Educational Studies in Mathematics, 13, p. 349-372. Kent, D. (1979). More about the processes through which Mathematics is lost. Educational Research, 22 (1), p. 22-31. Kilpatrick, J. (1987). What constructivism might be in mathematics education. Proceedings of the XI International Conference for PME, p. 3-23. Kouba, V. 6 McDonald, J. (1987). Students' perceptions of Mathematics as a domain. Proceedings of the XI International Conference for PHE, p. 106-112. Kulm, G. (1980). Research on Attitudes. In Shumway, R. (Ed.) Research in Mathematics Education. Reston: NCTM. Lawler, R. (1985). Computer experience and cognitive development. Chichester: Ellis Horwood. Marcelo, C. (1907). A study of implicit theories and beliefs about teaching in elementary school teachers. ComunicagAo apresentada no encontro anual da American Educational research Association, Washington. McLeod, D. (1987). A constructivist approach to research on attitude toward Mathematics. Proceedings of the XI International Conference for PHE, p. 133-139. McLeod, D. (1989). The role of affect in mathematical problem solving. In D. Leod & V. Adams (Ede), Affect and mathematical problem solving: a new perspective. New York: Springer-Verlag. Quilter, D. & Harper, E. (1908). why we didn't like mathematics, and why we can't do it. Educational Research, 30 (2), p. 121-134. Schoenfeld, A. (1986). Students' beliefs about Geometry and their effects on the students' geometry performance. Manuscrito ñao publicado. Schoenfeld, A. (1987). What's all the fuss about matecognition? In Schoenfeld, A. (Ed.), Cognitive Science and Mathematics ' Education. New Jersey. Shaughnessy, J., Haladyna, T. & Shaughnessy, M. (1983). Relations of student, teacher and learning enviroment variables to attitude Mathematics. School Science and Mathematics, 83 (1), p. 21-37. Shaw, M. & Wright, J. (1967). Scales for the measurement of attitudes. McGraw- Hill. Triandis, H. (1971). Attitude and Attitude Change. Wiley. Vala, J. (1986). Sobro as representagoes socials - para uma epistemologia do senso comum. Cadernos de ciencias Sociais, 4, 5-30. von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.) Problems of representation in the teaching and learning of mathematics. New Jersey: Erlbaum.
Proyectos
Cantidad de páginas
21