Algumas reflexões sobre a teoria de Van Hiele
Tipo de documento
Autores
Lista de autores
De-Villiers, Michael
Resumen
Este artigo apresenta uma retrospectiva ds pesquisas sobre a teoria de Van Hiele nos últimos 30 anos. Destaca e ilustra alguns aspectos importantes sobre as implicações teóricas para a concepção de atividades de aprendizagem em contextos de geometria dinâmica. Problemas e questões para novas pesquisas são sugeridos tais como a inclusão hierárquica de classes e sobre o desenvolvimento da compreensão de outras funções da prova. A tradução do artigo, autorizada pelo autor, é de Celina A. A. P. Abar.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Evolución histórica de conceptos | Formas geométricas | Historia de la Educación Matemática | Reflexión sobre la enseñanza | Software
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
ATEBE, H.U. & SCHÄFER, M. (2008). As soon as the four sides are all equal, then the angles must be 90°. Children’s misconceptions in geometry. African Journal of Research in Science, Mathematics e Technology Education, 12(2), 47-66. BRUNER, J.S. (1966). Towards a Theory of Instruction. New York: Norton. BURGER, W.F. & SHAUGHNESSY, J.M. (1986). Characterizing the Van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31-48. CASA, T.M. & GAVIN, M.K.(2009). Advancing Elementary School Students’ understanding of quadrilaterals. In Craine, T. e Rubenstein, R. (2009). Understanding Geometry for a Changing World. 71st Yearbook, Reston, VA: NCTM, pp. 205-219. CRAINE, T.V. & RUBENSTEIN, R.N. (1993). A Quadrilateral Hierarchy to Facilitate Learning in Geometry. Mathematics Teacher 86 (January), 30–36. DE VILLIERS, M. (1986). Boolean Algebra at school. University of Stellenbosch: RUMEUS. (1987). Research evidence on hierarchical thinking, teaching strategies and the Van Hiele Theory: Some critical comments. University of Stellenbosch: RUMEUS. (Disponível em: http://math.kennesaw.edu/~mdevilli/VanHieleCritique-87.pdf ) (1991). Pupils' needs for conviction and explanation within the context of geometry. Pythagoras, 26, 18-27. (Disponível em: http://mzone.mweb.co.za/residents/profmd/needs.pdf ) (1994). The role and function of a hierarchical classification of the quadrilaterals. For the Learning of Mathematics, 14(1), 11-18. (Disponível em: http://mzone.mweb.co.za/residents/profmd/classify.pdf ) (1998). To teach definitions or teach to define? In Olivier, A. e Newstead, K. (Eds). Proceedings of PME 22, Vol 2, 248-255. (Disponível em: http://mzone.mweb.co.za/residents/profmd/define.htm) (2003). Rethinking Proof with Sketchpad 4. Key Curriculum Press, USA. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. The International Journal of Mathematical Education in Science e Technology, 35(5), 703-724. (Disponível em: http://mysite.mweb.co.za/residents/profmd/vanhiele.pdf ) (2009). Some Adventures in Euclidean Geometry. Lulu Publishers. (Disponível em: http://www.lulu.com/content/7622884 DE VILLIERS, M. & NJISANE (1987). The Development of Geometric Thinking among Black High School Pupils in KwaZulu (R.S.A.), Proceedings of the Eleventh PME-conference, Montreal: Vol.3, pp.117-123, July 1987. DE VILLIERS, M.; GOVENDER, R. & PATTERSON, N. (2009). Defining in Geometry. In Craine, T. e Rubenstein, R. (2009). Understanding Geometry for a Changing World. 71st Yearbook, Reston, VA: NCTM, pp. 189-203. FEZA, N. & WEBB. P. (2005). Assessment standards, Van Hiele levels, and grade seven learners’ understandings of geometry. Pythagoras, 62 (December), 36-47. FREUDENTHAL, H. (1973). Mathematics as an educational task. Dordrecht: Reidel. FUYS, D., GEDDES, D. & TISCHLER, R. (1988). The Van Hiele Model of Thinking in Geometry among Adolescents. JRME Monograph No. 3, NCTM. GOVENDER, R. & DE VILLIERS, M. (2002).Constructive evaluation of definitions in a Sketchpad context. Proceedings of AMESA 2002. 1-5 July 2002, University of Natal, Durban, pp. 30-40. (Disponível em: http://mysite.mweb.co.za/residents/profmd/rajen.pdf GOVENDER, M. (1995). Pupils' proof-writing achievement in circle geometry. Unpublished B.Ed. dissertation, University of Durban-Westville. GUTIERREZ, A., PEGG, J. & LAWRIE, C. (2004). Characterization of students’ reasoning and proving abilities in 3-dimensional geometry. Proceedings of the 28th PME Conference, Vol. 2, pp. 511-518. HOFFER, ALAN. (1981). Geometry is More Than Proof. Mathematics Teacher, 74 (January):11- 18. IDRIS, N. (2009). The impact of using Geometer’s Sketchpad on Malaysian students’ achievement and Van Hiele geometric thinking. Journal of Mathematics Education, Dec, Vol. 2, No. 2, pp. 94-107. ISODA, M. (1996). The development of the language of function: An application of Van Hiele’s levels. In Puig, L. e Gutierrez, A. Proceedings of PME 20, Vol. 3, 105-112. LAND, J.E. (1990). Appropriateness of the Van Hiele model for describing students’ cognitive processes on algebra tasks as typified by college students’ learning. Ann Arbor, Mi. UMI Dissertation Services. MAYBERRY, J.W. (1981). An Investigation of the Van Hiele levels of Geometric Thought in Undergraduate Preservice Teachers. Unpublished doctoral dissertation, Univ. of Georgia, Athens. MALAN, F.R.P. (1986). Onderrigstrategieë vir die oorgang van partisie denke na hierargiese denke in die klassifikasie van vierhoeke: enkele gevallestudies. [Teaching strategies for the transition of partition thinking to hierarchical thinking in the classification of quadrilaterals.] (Internal report no. 3). Stellenbosch: University of Stellenbosch, Research Unit of Mathematics Education (RUMEUS). MUDALY, V. & DE VILLIERS, M. (2000). Learners' needs for conviction and explanation within the context of dynamic geometry. Pythagoras, 52 (August). 20-23. (Disponível em: http://mzone.mweb.co.za/residents/profmd/vim.pdf ) NIXON, E.G. (2002). An investigation of the influence of visualization, exploring patterns and generalization on thinking levels in the formation of concepts of sequences and series. Unpublished Masters thesis. Pretoria: UNISA. NIXON, E.G. (2005). Creating and learning abstract algebra: Historical phases and conceptual levels. Unpublished DPhil Dissertation. Pretoria: UNISA. NOHDA, N. (1992). Geometry teaching in Japanese school mathematics. Pythagoras, 28, April, 18-25. PEGG, J. & DAVEY, G. (1989). Clarifying level descriptors for children’s understanding of some basic 2-D geometric shapes. Mathematics Education Research Journal 1 (1): 16- 27. SÁENZ-LUDLOW, A. & ATHANASOPOULOU, A. (2007). Investigating properties of isosceles trapezoids with the GSP: The case of a pre-service teacher. In Pugalee, D; Rogerson, A e Schinck, A, (Editors). Proceedings of the 9th International Conference: Mathematics Education in a Global Community, University of North-Carolina, September 7-12, 2007, pp. 577-582. (Disponível em: http://math.unipa.it/~grim/21_project/21_charlotte_SaenzLudlowAthanasopoulouPaperEdit.pdf ) SMITH, E. & DE VILLIERS, M. (1989). A comparative study of two Van Hiele testing instruments. Poster presented at the 13th International Conference of PME, Paris. (Disponível em: http://math.kennesaw.edu/~mdevilli/VanHiele-test-comparison.pdf) SMITH, R. R. (1940). Three major difficulties in the learning of demonstrative geometry. The Mathematics Teacher, 33, 99-134, 150-178. The Mathematical Association of South Africa. (1978). South African Mathematics Project: Syllabus Proposals. Pretoria: MASA. (Now Wits: AMESA). UNIVERSITY OF STELLENBOSCH. (1984). Levels of thinking in geometry: Tests 1 e 2. Unit for Research in mathematics Education, Researchers: P.G. Human e M.D. de Villiers. (Disponível, respectivamente, em: http://www.scribd.com/Geometry-Levelsof-Thinking-Test-1-1984/d/30882207 e http://www.scribd.com/doc/30882101/Geometry-Levels-of-Thinking-Test-2-1984 USISKIN, Z. (1982). Van Hiele levels and Achievement in Secondary School Geometry. Final report of the CDASSG Project. Chicago: Univ. of Chicago. VAN HIELE, P.M. (1973). Begrip e Inzicht. Muusses: Purmerend. VAN PUTTEN, S. (2008). Levels of Thought in Geometry of Pre-service Mathematics Educators according to the van Hiele Model. Unpublished Master’s thesis, University of Pretoria. (Disponível em: http://upetd.up.ac.za/thesis/available/etd-05202008130804/unrestricted/dissertation.pdf) WOOD, D., BRUNER, J.S., & ROSS, G. (1976). The role of tutoring in problem solving. Journal of Psychology and Psychiatry. 17. WIRSZUP, I. (1976). Breakthroughs in the Psychology of Learning and Teaching Geometry. In J.L. Martin (Ed.). Space and Geometry. Columbus, Ohio: Eric Centre. WU, D. & MA, H. (2006). The distribution of Van Hiele levels of geometric thinking among 1st through 6th graders. In Novotna, J. et al, Proceedings of PME 30, Vol 5, pp. 409-416. Prague: PME.