Analysis of the critical attitude of university social sciences students toward the use of computing software
Tipo de documento
Lista de autores
Pestano, Celina, González, Concepción y Gil, Mª. Candelaria
Resumen
This research is in the context of university mathematics education for social sciences students, in particular, in the fields of economics, business, accounting and finance. It arises from the observed deficiency in the training of students that leads them to trust the accuracy of results obtained through any specialized and widely recognized mathematical software. Some of them know that the software can be mistaken, however they believe that it will only occur in exercises at a far higher level than that affecting them, meaning those involving strictly scientific areas. The research confirms that this blind trust is true, and justifies why they should have a critical attitude toward the use of software at any level. It also provides one of multiple answers to the question that some of them ask: why devote class time to the methods and certain steps in the algorithms if the computer can solve the exercises?
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
24
Número
1
Rango páginas (artículo)
35-60
ISSN
20076819
Referencias
Barrios-García, J. A. et al. (2005). Análisis de funciones y economía en la empresa. Ediciones Díaz de Santos, Madrid. Barrios-García, J. A. et al. (2006). Álgebra matricial para economía y empresa. Delta Publicaciones, Madrid. Brunton, M., & Coll, R. K. (2005). Enhancing Technology Education by Forming Links with Industry: A New Zealand Case Study. International Journal of Science and Mathematics Education, 3(1), 141-166. Cahill, M. & Kosicki, G (2001). A Framework for Developing Spreadsheet Applications in Economics. Social Science Computer Review, 19 (2), 186-200. Ciaurri, Ó., & Varona, J. L. (2008). ¿Podemos fiarnos de los cálculos efectuados con ordenador? SEMA Bulletin, (37), 93-121. Cardeño Espinosa, J. & Córdoba Gómez, F.J. (2013), Innovación en la Enseñanza de las matemáticas: Uso de Geogebra. Fondo Editorial ITM. Carreras-Marin, A., Blasco Martel, Y., Badia-Miro, M., Bosch-Princep, M., Morillo-Lopez, I., Cairo-I-Cespedes, G., & Casares Vidal, M. D. (2013). The promotion and assessment of generic skills from interdisciplinary teaching teams. Edulearn13: 5th International Conference on Education and new Learning Technologies (pp. 201-207). IATED-INT Assoc. Technology Education & Development, Lauri Volpi 6, Valencia, Burjassot 46100, Spain. Elías, C. (2008). La razón estrangulada. La crisis de la ciencia en la sociedad contemporánea. Debate. Barcelona. European Commission (2015), Science education for responsible citizenship Report EUR 26893 (EN chair H. Hazelkorn), Brussels. Facione, P. (2007). Pensamiento Crítico: ¿Qué es y por qué es importante? Insight assessment, 23, 56. Franco Brañas, J.R. (2011) Fundamentos de Matemáticas. Ejercicios resueltos con Maxima, Editorial Ra-Ma, Madrid. González Pareja, A. et al. (1997). Matemáticas en la economía y la empresa con DERIVE y MATHEMATICA en un entorno Windows: fundamentos de álgebra matricial, teoría de funciones y operaciones financieras, Editorial Ra-Ma, Madrid. González Pareja, A. (1999.) Mathematica: programación matemática en la economía y la empresa, Editorial Ra-Ma, Madrid. Hillier & Lieberman (2010). Introducción a la Investigación de Operaciones. Editorial McGraw- Hill, Mexico. Jaramillo, E. M. W., Peña, J. M., & Falla, S. O. (2016). La actitud crítica un aspecto fundamental en la educación. Sophia, 12 (1), 107-114. Jehlička, V., & Rejsek, O. (2018). A Multidisciplinary Approach to Teaching Mathematics and Information and Communication Technology. Eurasia Journal of Mathematics, Science and Technology Education, 14(5), 1705-1718. Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science education, 85(3), 291-310. Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics, 67(3), 255-276. Lorenzo, M. (2005). The Development, Implementation, and Evaluation of a Problem Solving Heuristic. International Journal of Science and Mathematics Education, 3(1), 33-58. Olsson, J. (2018). The contribution of reasoning to the use of feedback from software when solving mathematical problems. International Journal of Science and Mathematics Education, 16(4), 715-735. Pei, C. Y., Weintrop, D. & Wilensky, U. (2018). Cultivating Computational Thinking Practices and Mathematical Habitsof Mindin Lattice Land. Mathematical Thinkingand Learning, 20:1, 75-89. Ponce Campuzano, J.C. & Rivera Figueroa, A. (2011), Un análisis del uso de la tecnología para el cáculo de primitivas, Números, 77, 85-98. Rodrigo Cano, D., de Casas Moreno, P. & Aguaded Gómez, J.I. (2018). El rol del docente universitario y su implicación ante las humanidades digitales. Index. comunicación: Revista científica en el ámbito de la Comunicación Aplicada, 8(2), 13-31. Rossi, P. G. (2017). Diseño Visible. Revista Fuentes, 19(2), 23-38. Taha, H A. (2012). Investigación de operaciones. 9th Edition. Pearson Educación, Mexico.