Aplicação de uma tarefa criativa para o ensino da geometria: a circunferência como lugar geométrico
Tipo de documento
Autores
Lista de autores
Araújo, Camila y Moran, Mariana
Resumen
O presente artigo dispõe uma abordagem qualitativa e tem como objetivo apresentar partes dos dados de uma pesquisa de mestrado que buscou analisar de que maneira o uso de Tarefas Criativas contribuem com as fases de aprendizagem do conceito de circunferência como lugar geométrico. A Tarefa Criativa que será investigada neste artigo contou com a participação de 6 alunos do Sétimo ano do Ensino Fundamental de uma escola pública do norte do Paraná. Os dados coletados foram analisados com base nas apreensões figurais que estão diretamente relacionadas com os processos cognitivos propostos por Raymond Duval. Os resultados indicam que esta tarefa potencializou a mobilização dos processos cognitivos (visualização, construção e raciocínio) que foram identificados por meio das apreensões figurais mobilizadas (perceptiva, operatória, sequencial e discursiva), oportunizando a construção do conhecimento de lugar geométrico da circunferência.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Formas geométricas | Gráfica | Magnitudes | Razonamiento | Tareas | Visualización
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
18
Rango páginas (artículo)
1-18
ISSN
19811322
Referencias
Cassoli, C. (2022). As contribuições de Tarefas Criativas nas fases da aprendizagem da circunferência no ensino fundamental. (Dissertação de mestrado em Educação Matemática). Universidade Estadual do Paraná, Campo Mourão. Duval, R. (1997). La notion de registre de représentation sémiotique et l'analyse du fonctionnement cognitif de la pensée. IN: Curso ministrado na PUC/SP. Duval, R. (1998). Geometry from a cognitive point of view. Perspectives on the Teaching of Geometry for the 21^ century. Duval, R. (2004). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Universidad del Valle. Duval, R., & Moretti, M. T. (2012). Abordagem cognitiva de problemas de geometria em termos de congruência. REVEMAT: Revista Eletrônica de matemática, 7(1), 118-138. Santos Filho, J. C., & Gamboa, S. S. (Eds.). (2009). Pesquisa educacional: quantidade-qualidade. Cortez Editora. Ponte, J. P. D. (2006). Estudos de caso em educação matemática. Bolema, 105-132. Vale, I. (2015). A criatividade nas (re) soluções visuais de problemas. Educação e Matemática, (135), 9-15. Vale, I., Pimentel, T., & Barbosa, A. (2015). Ensinar matemática com resolução de problemas. Quadrante, 24(2), 39-60.
Proyectos
Cantidad de páginas
1