Competencias matemáticas: desempeño y errores en la resolución de problemas de límites
Tipo de documento
Autores
Lista de autores
Díaz, Verónica y Poblete, Álvaro
Resumen
La capacidad de aplicar las matemáticas en una situación del mundo real se considera un objetivo principal de las matemáticas y de la formación de ingenieros. El propósito de este estudio, es identificar y caracterizar las competencias matemáticas y los errores de los estudiantes de ingenierías en la resolución de problemas de límites de funciones reales, a través de la aplicación de instrumentos evaluativos con problemas de respuesta abierta. Se presenta la metodología cuantitativa del estudio descriptivo, con una muestra de cinco carreras de ingeniería de la Universidad de Los lagos en sus campus de Puerto Montt y Osorno. Considerando las etapas de resultado y completación, donde el problema está casi resuelto o se utilizó un método apropiado que permitió llegar a la solución correcta, los resultados indican que los estudiantes de las cinco ingenierías registraron desempeños similares, mostrando un mejor resultado en la competencia tipo 2 de problemas rutinarios de contexto realista y fantasista, pero mayoritariamente con errores de uso de teoremas y definiciones deformadas y errores técnicos.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Competencias | Errores | Límites | Otro (métodos) | Pruebas | Resolución de problemas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Beynon, K. y Zollman, A. (2016). Lacking a rigorous concept of limit: Advanced nonmathematics students’ personal concept definitions. Journal Investigation in Mathematics Learning, 8(1), 47-62. Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal of Mathematical Education in Science and Technology, 32(4), 487-500. Brodie, K. (2005). Using cognitive and situative-perspectives to understand teacher interaction with learner errors. In H.L. Chick & J.L. Vincent (Eds.), Proceedings of the 29 th Conference of the International Group for the Psychology of Mathematics Education (pp. 177–184). Melbourne: PME. Brodie, K. (2006). Teaching mathematics for equity: learner contributions and lesson structure. African Journal for Research in Mathematics, Science and Technology Education, 10(1), 13–24. Brodie, K. (2010). Teaching mathematical reasoning in secondary school classrooms. London: Springer. Cappetta, R. (2007). Reflective abstraction and the concept of limit: A quasi experimental study to improve student performance in college calculus by promoting reflective abstraction through individual, peer, instructor and curriculum initiates. Unpublished doctoral dissertation, Northern Illinois University, DeKalb, IL. Cappetta, R.W., y Zollman, A. (2009). Creating a discourse-rich classroom on the concept of limits in calculus: Initiating shifts in discourse to promote reflective abstraction. In L. Knott (Eds.) The Role of Mathematics Discourse in Producing Leaders of Discourse (pp. 17-39). Charlotte, NC: Information Age Publishing. Cappetta, R. W., y Zollman, A. (2013). Agents of change in promoting reflective abstraction: A quasi-experimental, study on limits in college calculus. Journal of Research in Mathematics Education, 2(3), 343-357. Cory, B. L., y Gaofalo, J. (2011). Using dynamic sketches to enhance preservice secondary mathematics teachers understanding of limits of sequences. Journal for Research in Mathematics Education, 42, 65-97. Davis, R.B. (1984). Learning mathematics: the cognitive science approach to mathematics education. London: Groom Helm. Dawkins, P. (2012). Metaphor as a possible pathway to more formal understanding of the definition of sequence convergence. Journal of Mathematical Behavior, 31(3), 331-343. Díaz V. y Poblete Á. (1998). Resolver tipos de problemas matemáticos: ¿una habilidad inhabilitante? Revista Epsilon, 14(42), 409-423. Díaz V. y Poblete Á. (2004). Evaluación longitudinal de aprendizajes matemáticos, objetivos transversales e indicadores de contexto. Santiago, Chile: Comisión Nacional de Investigación Científica y Tecnológica, 2004. (Proyecto Fondecyt N°1040035). Díaz V. y Poblete Á. (2016). Modelo de competencias profesionales de matemáticas y su implementación en profesores de la enseñanza primaria. Bolema, Rio Claro (SP), (30)55,786-807. doi.10.1590/1980-4415v30n55a23. Díaz V. y Poblete Á. (2017). A model of professional competences in mathematics and didactic knowledge of teachers. International Journal of Mathematical Education in Science and Technology, 48 (5), 702-714. doi: 10.1080/0020739X.2016.1267808. Díaz V. (2018). The competence of solving mathematical problems in the formation of ethical values. International Journal of Educational and Pedagogical Sciences, 20 (8).World Academy of Science, Engineering and Technology. Drews, D. (2005). Children’s mathematical errors and misconceptions: perspectives on the teacher’s role. In A. Hansen (Eds.), Children errors in mathematics: Understanding common misconceptions in primary schools (pp.14-21). Britain: Paperback. Ernest, P. (1991). The Philosophy of Mathematics Education. London: Routledge Falmer. Kirkley, J. (2003). Principles for teaching problem solving. Bloomington:PLATO Learning. Foster, D. (2007). Making meaning in algebra examining students’understandings and misconceptions. Assessing Mathematical Proficiency, 53,163–176. Harris, D., Black, L., Hernandez-Martinez,P., Pepin B., y Williams, J. (2014). Mathematics and its value for engineering students: what are the implications for teaching? International Journal of Mathematical Education in Science and Technology, 46(3), 321- 336. doi:10.1080/0020739X.2014.979893. Hatano, G. (1996). A conception of knowledge acquisition and its implications for mathematics education. In P Steffe, P Nesher, P Cobb, G Goldin, & B Greer (Eds.), Theories of Mathematical Learning (pp. 197–217). New Jersey: Lawrence Erlbaum. Liang, S. (2016). Teaching the concept of limit by using conceptual conflict strategy and Desmos graphing calculator. International Journal of Research in Education and Science, 2(1), 35-48. Luneta, K, y Makonye, P.J. (2010). Learner errors and misconceptions in elementary analysis: A case study of a grade 12 class in South Africa. Acta Didactica Napocensia, 3(3), 35–46. Merenluoto, K. y Lehtinen, E. (2000). The ”conflicting” concepts of continuity and limit: A conceptual change perspective. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education. Hiroshima: PME. Movshovitz-Hadar, N., Zaslavski, O. y Inbar, S. (1987). An empirical classification model for errors in high school mathematics. Journal for Research in Mathematics Education, 18 (1), 3-14. Murdiyani, N.M. (2018). Developing non-routine problems for assessing students' mathematical literacy. Journal of Physics: Conference Series 983. doi:10.1088/1742-6596/983/1/012115. Muzangwa, J., y Chifamba, P. (2012). Analysis of Errors and Misconceptions in the Learning of Calculus by Undergraduate Students. Acta Didactica Napocensia, 5(2), 1-10. Nesher, P. (1987). Towards an instructional theory: the role of student’s misconceptions. For Learning of Mathematics, 7(3), 33–40. Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limits concepts. Journal for Research in Mathematics Education, 40 (4), 396-426. Olivier, A. (1989). Handling pupils' misconceptions. Stellenbosch, South Africa: University of Stellenbosch. Orton, A. (1983a). Students' understanding of differentiation. Educational Studies in Mathematics, 14(3), 235–250. Orton, A. (1983b). Students’ understanding of integration. Educational Studies in Mathematics, 14, 1–18. Pantziara M., Gagatsis A y Elia I. (2009). Using diagrams as tools for the solution of nonroutine mathematical problems. Educational Studies in Mathematics, 72(1), 39-60. Polya, G. (1973). How To Solve It: A New Aspect of Mathematical Method. Princeton, New Jersey:Princeton University Press. Przenioslo, M. (2004). Images of the limit of function formed in the course of mathematical studies at the university. Educational Studies in Mathematics, 55, 103-132. Radatz, H. (1979) Error analysis in mathematics education. Journal for Research in Mathematics Education, 10 (3), 163-172. Rasch, G. Probabilistic models for some intelligence and attainment tests. (Copenhagen, Danish Institute for Educational Research), expanded edition (1980) with foreword and afterword by B. Wright. Chicago: The University of Chicago Press, 1960/1980. Ryan, J, y Williams, J. (2000). Mathematical discussions with children: exploring methods and misconceptions as a teaching strategy. Manchester: Centre for mathematics education. University of Manchester. Roh, K. H. (2010). An empirical study of students understanding of a logical structure in the definition of limit via the-strip activity. Educational Studies in Mathematics, 73, 263-279. Schoenfeld, A. H. (1987). Polya, Problem Solving, and Education. Mathematics Magazine, 60(5), 283–291. Schoenfeld, A. H. (2013). Reflections on Problem Solving Theory and Practice. The Mathematics Enthusiast, 10(1,2), 9–32. Simamora, R., Saragih, S., y Siregar, H. (2019). Improving students’ mathematical problem solving ability and self-efficacy through guided discovery learning in local culture context. International Electronic Journal of Mathematics Education, 14(1), 61-72. doi:10.12973/iejme/3966. Siyepu, S.W. (2015). Analysis of errors in derivatives of trigonometric functions.International Journal of STEM Education, 2(16).doi:10.1186/s40594-015-0029-5. Smith, J.P., DiSessa, A.A, y Rosehelle, J. (1993). Misconceptions reconceived: a constructivist analysis of knowledge in transition. The Journal of the Learning Science, 3(2), 115–163. Sweller J., Clark R. y Kirschner P. (2010). Teaching general problem-solving skills is not a substitute for, or a viable addition to, teaching mathematics. Notices of the American Mathematical Society, 57, 1303-1304. Szetela, W., y Nicol, C. (1992). Evaluating Problem Solving in Mathematics. Educational Leadership, 5, 42–45. Szydlik, J. E. (2000). Mathematical beliefs and conceptual understanding of the limit of a function. Journal for Research in Mathematics Education, 31(3), 258-276. Williams, S. (1991). Models of limit held by college calculus students. Journal for Research in Mathematics Education, 22(3), 219-236.