Conceptualizaciones de la pendiente en el currículum colombiano de matemáticas
Tipo de documento
Lista de autores
Dolores, Crisólogo y Mosquera, Gustavo Andrés
Resumen
Este artículo da cuenta de una investigación enfocada en explorar qué conceptualizaciones de la pendiente se promueven en el currículum colombiano de matemáticas. Se utilizó el método de Análisis de Contenido a través del cual se examinaron dos documentos curriculares: Los Estándares Básicos de Competencias en Matemáticas y Los Derechos Básicos de Aprendizajes en Matemáticas. Como marco referencial se utilizaron las conceptualizaciones de la pendiente identificadas por Stump (1999) y Moore-Russo et al. (2011). Los resultados indican que en la primaria se enfatizan las conceptualizaciones propiedad funcional y situación del mundo real, en secundaria las del coeficiente paramétrico e indicador de comportamiento, en bachillerato la propiedad funcional, situación del mundo real y la concepción en cálculo. El currículum colombiano tiene una tendencia marcada hacia el desarrollo del pensamiento variacional. Este trabajo aporta información acerca de cómo se prevé la enseñanza de la pendiente en Colombia, resultados que son comparados con lo que prevén al respecto el currículum norteamericano y mexicano, los resultados pueden ser útiles en las reformas curriculares para prever consecuencias no deseadas en el aprendizaje de este concepto.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Conceptual-teórico | Documentos curriculares | Funciones | Otro (tipos estudio)
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Bardin, L. (2002). El análisis de contenido. 3a Edición. Akal. Brown, T. L., y Hirschfeld, G. (2007). Students' conceptions of assessment and mathema- tics: Self-Regulations Raises Achievement. Australian Journal of Education & Deve- lopment Psychology, 7, 63-74. Byerley, C. y Thompson, P. (2017). Secondary mathematics teachers’ meanings for mea- sure, slope, and rate of change. The Journal of Mathematical Behavior, 48(1), 168–193. https://doi.org/10.1016/j.jmathb.2017.09.003 Casey, S. y Nagle, C. (2016). Students’ use of slope conceptualizations when reasoning about the line of best fit. Educational Studies in Mathematics, 92 (2), 163–177. https:// doi.org/10.1007/s10649-015-9679-y Cheng, I. (2010). Fractions: A new slant on slope. Mathematics teaching in the Middle school, 16(1), 35–41. https://doi.org/10.5951/MTMS.16.1.0034 Cho, P., y Nagle, C. (2017). Procedural and conceptual difficulties with slope: An analysis of students’ mis takes on routine tasks. International Journal of Research in Educa- tion and Science, 3(1), 135–150. Choppin, J., McDuffie, A.M., Drake, C. y Davis, J. (2020). The role of instructional materials in the relationship between the official curriculum and the enacted curriculum, Mathe- matical Thinking and Learning, 1-26, https://doi.org/10.1080/10986065.2020.1855376 Choy, B., Lee, M., y Mizzi, A. (2015) Textbook signatures: An exploratory study of the notion of gradient in Germany, Singapore and South Korea. En K. Beswick, T. Muir, y J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psycho- logy of Mathematics Education (vol. 2, pp. 161-168). University of Tasmania. Clement, J. (1985). Mis conceptions in graphing. En L. Streefland (Ed.), Proceedings of the Annual Conference of the International Group for the Psychology of Mathematics Education (9th) (vol. 1, pp. 369-375). Noordwijkerhout, The Netherlands. Demir, M. (2018). Effects of virtual manipulatives with different approaches on students’ knowledge of slope. Journal of Interactive Learning Research, 29(1), 2550. Deniz, Ö., y Kabael, T. (2017). 8th grade students’ construction processes of the concept of slope. Education and Science, 42(192), 139–172. https://doi.org/10.15390/ EB.2017.6996 Dolores, C. (2012). ¿Hacia dónde reorientar el Currículum de Matemáticas del Bachille- rato? En C. Dolores y M. S. García, (Eds.), ¿Hacia dónde reorientar el Currículum de Matemáticas del Bachillerato? (pp. 165-181). Plaza y Valdés, UAGro Dolores, C., e Ibáñez, G. (2020). Slope conceptualizations in mathematics textbooks. Bolema: Boletim de Educação Matemática, 34(67), 825–846. https://doi. org/10.1590/1980-4415v34n67a22 Dolores, C., Rivera, M. I., y García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369–389. https://doi. org/10.1080/0020739X.2018.1507050 Dolores, C., Rivera, M., y Moore-Russo, D. (2020). Conceptualizations of slope in Mexican intended curriculum. School Science and Mathematics, 120(2), 104-115. https://doi. org/10.1111/ssm.12389 Duval, R. (2011). Ver e ensinar a matemática de outra forma: entrar no modo matemá- tico de pensar: os registros de representações semióticas. Proem. Fusch, P., Fusch, G. E., y Ness, L. R. (2018). Denzin’s Paradigm Shift: Revisiting Triangula- tion in Qualitative Research. Journal of Social Change, 10, 19–32. https://doi. org/10.5590/JOSC.2018.10.1.02 Fonseca, J. y Gamboa, M. (2017). Aspectos teóricos sobre el diseño curricular y sus par- ticularidades en las ciencias. Boletín Redipe, 6(3), 83–112. García-García, J. y Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Journal of Mathe- matical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.108 0/0020739X.2017.1355994 González, D. A. (2021). The progression of preservice teachers’ covariational reasoning as they model global warming, The Journal of Mathematical Behavior, 62, https://doi. org/10.1016/j.jmathb.2021.100859 Hong, D., y Choi, K. (2018). A comparative analysis of linear functions in Korean and American standards-based secondary textbooks. International Journal of Mathema- tical Education in Science and Technology, 49(7), 1025–1051. Kertil, M., Erbas, A. K., y Cetinkaya, B. (2019). Developing prospective teachers’ covaria- tional reasoning through a model development sequence. Mathematical Thinking and Learning, 1–27. https://doi.org/10.1080/10986065.2019.1576001 Leinhardt, G., Zaslavsky, O., y Stein, M. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64. https://doi. org/10.3102/00346543060001001 MEN (2006). Estándares Básicos de Competencias en Matemáticas. En MEN (Ed.), Están- dares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadana (pp. 46–95). Mineducación. http://www.mineducacion.gov.co/1621/articles-116042_ archivo_pdf2.pdf MEN (2016). Derechos básicos de aprendizajeV2. Panamericana Formas e Impresos S.A http://aprende.colombiaaprende.edu.co/sites/default/files/naspublic/DBA_Matemáti- cas.pdf MEN (2017). Vamos a aprender matemáticas. Libro del estudiante 8. MEN (2017). Minis- terio de Educación Nacional /Ediciones SM, S. A. Moore-Russo, D., Conner, A., y Rugg, K. (2011). Can slope be negative in 3-space? Stud- ying concept image of slope through collective definition construction. Educational Studies in Mathematics, 76(1), 3–21. https://doi.org/10.1007/s10649-010-9277-y Nagle, C., Casey, S., y Moore–Russo, D. (2017). Slope and line of best fit: A transfer of knowledge case study. School Science and Mathematics, 117(1–2), 13–26. https://doi. org/10.1111/ssm.12203 Nagle, C., Martínez-Planell, R., y Moore–Russo, D. (2019). Using APOS theory as a fra- mework for considering slope understanding. Journal of Mathematical Behaviour, 54, 100684. https://doi.org/10.1016/j.jmathb.2018.12.003 Nagle, C. y Moore-Russo, D. (2013b). Slope: a network of connected components. In: M. Martinez, y A. Castro (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 127-135). University of Illinois at Chicago. Nagle, C., y Moore–Russo, D. (2013a). The concept of slope: Comparing teachers´ concept images and instructional content. Investigations in Mathematics Learning, 6(2), 1–18. https://doi.org/10.1080/24727466.20covariation13.11790330 Nagle, C., y Moore–Russo, D. (2014). Slope across the curriculum: Principles and standards for school mathematics and common core state standards. The Mathematics Edu- cator, 23(2), 40–59. Nagle, C., Moore–Russo, D., y Styers, J. (2017). Teachers’ interpretations of student state- ments about slope. En E. Galindo, y J. Newton (Eds.), Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psycho- logy of Mathematics Education (pp. 589–596). Hoosier Association of Mathematics Teacher Educators. National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. NCTM. Organization for Economic Cooperation and Development (OECD). (2004). The PISA 2003 assessment frame work: Mathematics, reading, science and problem-solving knowle- dge and skills. OECD Publishing. https://doi.org/ 10.1787/9789264101739–en Radford, L. (2005). La generalizzazione matematica come processo semiotico. La mate- matica e la sua didattica, 19(2), 191–213. Ramírez, M., Acosta, M., Perdomo, A., Ortíz, L., Cell, V., De Armas, R., Castaño, J., Gamboa, J., y Jiménez, J. (2013). Los caminos del saber matemáticas 8. Editorial Santillana S. A. Remillard, J. T., y Heck, D. J. (2014). Conceptualizing the curriculum enactment process in mathematics education. ZDM Mathematics Education, 46(5), 705–718. https://doi. org/10.1007/s11858-014-0600-4 Rivera, M., Salgado, G., y Dolores, C. (2019). Explorando las Conceptualizaciones de la Pendiente en Estudiantes Universitarios. Bolema: Boletim de Educação Matemática, 33(65), 1027–1046. http://dx.doi.org/10.1590/1980-4415v33n65a03 Salgado, G., Rivera, M., Dolores, C. (2019). Conceptualizaciones de pendiente: Contenido que enseñan los profesores del bachillerato. UNIÓN: Revista Iberoamericana de Educación Matemática, 15(57), 41–56. Solís, I. (2012). Del curículum de la RIEB a un modelo curricular institucional. En J. C. Guzmán, (Coord.), Del currículum al aula. Orientaciones y sugerencias para aplicar la RIEB (pp. 15 -50). Graó/Colofón. Stanton, M., y Moore–Russo, D. (2012). Conceptualizations of slope: A review of state standards. School Science and Mathematics, 112(5), 270–277. https://doi.org/10.1111/ j.1949-8594.2012.00135.x Stump, S. (1999). Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, 11(2), 124–144.https://doi.org/10.1007/bf03217065 Stump, S. (2001a). Developing preservice teachers’ pedagogical content knowledge of slope. The Journal of Mathematical Behavior, 20(2), 207–227. https://doi.org/10.1016/ S0732-3123(01)00071-2 Stump, S. (2001b). High school precalculus students’ understanding of slope as measure. School Science and Mathematics, 101(2), 81–89.https://doi.org/10.1111/j.1949-8594.2001. tb18009.x Susac, A., Bubic, A., Kazotti E., Planinic, M., y Palmovic, M. (2018). Student understanding of graph slope and area under a graph: A comparison of physics and non physics students, Physical Review Physics Education Research, 14, https://doi.org/10.1103/ PhysRevPhysEducRes.14.020109 Thompson, P. W., y Carlson, M. P. (2017). Variation, covariation, and functions: Foundatio- nal ways of thinking mathematically. En J. Cai (Ed.), Compendium for research in mathematics education (pp. 421–456). National Council of Teachers of Mathematics. Teuscher, D., y Reys, R. (2010). Slope, rate of change, and steepness: Do students unders- tand the concepts? Mathematics Teacher, 3(7), 519–524. https://doi.org/10.5951/ MT.103.7.0519 Van Steenbrugge, H., Valcke, M., Desoete, A. (2013). Teachers’ views of mathematics textbook series in Flanders: Does it (not) matter which mathematics textbook series schools choose? Journal of Curriculum Studies 45(3), 322–353.https://doi.org/10.108 0/00220272.2012.713995 Vergnaud, G. (1996). Au fond de l’action, la conceptualisation. En J. M. Barbier (Ed.), Savoirs théoriques et savoirs d’action (pp. 275–292). PUF. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactique des Mathématiques, 19, 133–169.