Covariación logarítmico-exponencial en futuros profesores de matemáticas: un estudio de caso
Tipo de documento
Autores
Lista de autores
Trejo, Manuel, Ferrari, Marcela y Martínez, Gustavo
Resumen
El presente estudio contribuye al cuerpo de investigación acerca del desarrollo del razonamiento covariacional en futuros profesores de matemáticas. Reportamos las acciones mentales y niveles de razonamiento covariacional logarítmico-exponencial percibidos en dos estudiantes de sexto semestre de una licenciatura en matemáticas, durante un experimento de enseñanza desarrollado por un futuro profesor de matemáticas que está inmerso en un proyecto de investigación. Las tareas del experimento inician con una construcción geométrica de puntos de una curva utilizando GeoGebra para que los estudiantes exploren las variaciones y describan la curva que ajusta los puntos y logren determinar una expresión general para la construcción de cualquier punto al reconocer las dos progresiones: la aritmética y la geométrica. Sin embargo, evidencian la complejidad de desarrollar un razonamiento covariacional continuo a partir de una tarea que incentiva el razonamiento covariacional discreto.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Exponenciales | Inicial | Logarítmicas | Otro (tipos estudio) | Razonamiento
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Carlson, M., Jacobs, S., Coe, E., Larsen, S., y Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352–378. Castillo-Garsow, C. (2010). Teaching the Verhulst model: a teaching experiment in covariational reasoning and exponential growth. (Tesis de doctorado no publicada). Ari- zona State University. Confrey, J., y Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26(2-3), 135–164. Confrey, J., y Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26(1), 66–86. Dennis, E. y Confrey, J. (1997). Drawing Logarithmic Curves with Geometer’s Sketchpad: A Method Inspired by Historical Sources. En J. King y D. Schattschneider (Eds.), Geometry Turned On: Dynamic Software in Learning, Teaching and Research. Mathematical Association of America. Ellis, A. B., Ozgur, Z., Kulow, T., Dogan, M. F., y Amidon, J. (2016). An Exponential Growth Learning Trajectory: Students’ Emerging Understanding of Exponential Growth Through Covariation. Mathematical Thinking and Learning, 18(3), 151–181. http://doi.org/ 10.1080/10986065.2016.1183090 Ellis, A. B., Ozgur, Z., Kulow, T., Williams, C., y Amidon, J. (2012). Quantifying exponential growth: The case of the jactus. En R. Mayes y L. Hatfield (Eds.), Quantitative reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context (pp. 93–112). University of Wyoming. Ferrari, M. (2008). Un estudio socioepistemológico de la función logarítmica. De facilitar cálculo a una primitiva. (Tesis de doctorado no publicada). Centro de Investigación y Estudios Avanzados-IPN. Ferrari, M. y Farfán, R. M. (2010). Una socioepistemología de lo logarítmico. Revista Lati- noamericana de Investigación en Matemática Educativa, 13(4), 59-68. Ferrari-Escolá, M, Martínez-Sierra, G. y Méndez-Guevara, M. (2016). “Multiply by Adding”: Development of the Logarithmic-Exponential Covariational Reasoning in High School Students. Journal of Mathematical Behavior, 42, 92–108. Gruver, J. (2017). A trajectory for developing conceptual understanding of logarithmic relationships. Journal of Mathematical Behavior, 50, 1–22. Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31(3), pp. 313–330. http://dx.doi.org/10.1016/j.jmathb.2012.01.001 Johnson, H. L. (2015a). Secondary Students’ Quantification of Ratio and Rate: A Framework for Reasoning about Change in Covarying Quantities. Mathematical Thinking and Learning, 17(1), 37–41. http://doi.org/10.1080/10986065.2015.981946 Johnson, H. L. (2015b). Together yet separate: Students’ associating amounts of change in quantities involved in rate of change. Educational Studies in Mathematics, 89(1), 89-110. http://doi.org/10.1007/s10649-014-9590-y Johnson, H. L., McClintock, E. y Hornbein, P. (2017). Ferris wheels and filling bottles: a case of a student’s transfer of covariational reasoning across tasks with different backgrounds and features. ZDM-The International Journal on Mathematics Education, 49(6), 851-864. https://doi.org/10.1007/s11858-017-0866-4 Kuper, E. G. y Carlson, M. (2018). Sparky the Saguaro: A Teaching Experiment Examining a Student’s Development of the Concept of Logarithms. En A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, y S. Brown (Eds.), Proceedings of the 21st Annual Conference on Research in Undergraduate Mathematics Education, 441-449, San Diego, California. Méndez, M. (2013). Desarrollo de red de usos del conocimiento matemático: la modelación para la matemática escolar. (Tesis de doctorado no publicada). Departamento de Matemática Educativa del Centro de Investigación y de Estudios Avanzados del IPN. Molina, M., Castro, E., Molina, J. L., y Castro, E. (2011). Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias 29(1), 75–88. Moore, K. C. (2010). The role of quantitative reasoning in precalculus students learning central concepts of trigonometry. (Tesis de doctorado no publicada). Arizona State University. Moore, K. C. (2012). Coherence, quantitative reasoning, and the trigonometry of students. En R. Mayes, y L. L. Hatfield (Eds.), Quantitative reasoning and mathematical modeling: a driver for STEM integrated education and teaching in context (pp. 75–92). University of Wyoming Press. Moore, K. C. (2013). Making sense by measuring arcs: a teaching experiment in angle measure. Educational Studies in Mathematics, 83(2), 225–245. https://doi.org/10.1007/ s10649-012-9450-6. Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal for Research in Mathematics Education, 45(1), 102–138. Moore, K. LaForest, K. y Kim, H. (2016). Putting the unit in pre-service secondary teachers’ unit circle. Educational Studies in Mathematics 92(2), 221-241. https://doi.org/10.1007/ s10649-015-9671-6 Moore, K. C., Paoletti, T., y Musgrave, S. (2013). Covariational reasoning and invariance among coordinate systems. Journal of Mathematical Behavior, 32(3), 461–473. http:// doi.org/10.1016/j.jmathb.2013.05.002 Paoletti, T., y Moore, K. C. (2017). The parametric nature of two students' covariational reasoning. The Journal of Mathematical Behavior, 48(1), 137–151. https://doi. org/10.1016/j.jmathb.2017.08.003 Saldanha, L., y Thompson, P. W. (1998). Re-thinking covariation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berensah y W. N. Coulombe (Eds.), Proceedings of the Annual Meeting of the Psychology of Mathematics Education – North America. North Carolina State University. Steffe, L. P., y Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In R. Lesh y A. E. Kelly (Eds.), Research design in mathematics and science education (pp. 267- 307). Erlbaum. Thompson, P. W. (1994a). Students, functions, and the undergraduate curriculum. En E. Dubinsky, A. H. Schoenfeld, y J. J. Kaput (Eds.), Research in collegiate mathematics education 1 (pp. 21–44). American Mathematical Society. Thompson, P. W. (1994b). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26(2–3), 229–274. http://doi.org/10.1007/BF01273664 Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: some spadework at the foundations of mathematics education. En O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, y A. Sépulveda (Eds.), Plenary paper delivered at the 32nd annual meeting of the international group for the psychology of mathematics education (Vol. 1, pp. 31–49). Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. En L. L. Hatfield, S. Chamberlain, y S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education (Vol. 1, pp. 33–57). University of Wyoming. Thompson, P. W., y Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. En J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics.