Desarrollando innovaciones en educación STEAM en entornos tecnológicos
Tipo de documento
Autores
Lista de autores
Lavicza, Zsolt y Tejera, Mathias
Resumen
En este artículo, ofrecemos ejemplos de nuestros proyectos de investigación sobre innovaciones tecnológicas y pedagógicas para ilustrar el impacto de los rápidos cambios tecnológicos en la investigación. Proponemos un aspecto adicional a considerar en la investigación basada en diseño al investigar la integración tecnológica o tecnologías innovadoras. Además, el rápido cambio en la tecnología plantea nuevos desafíos para el desarrollo profesional de los docentes y la integración de esas tecnologías innovadoras en las aulas. Anticipamos que nuestro trabajo contribuirá al desarrollo de recursos tecnológicos y pedagogías relacionadas, así como al refinamiento de las metodologías de investigación en entornos tecnológicos.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Computadores | Desarrollo del profesor | Resolución de problemas | Software | Tipos de metodología
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Volumen
18
Número
66
Rango páginas (artículo)
1-12
ISSN
1815-0640
Referencias
Annetta, L. A.; Frazier, W. M.; Folta, E.; Holmes, S.; Lamb, R.; Cheng, M.-T. (2013). Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning. Journal of Science Education and Technology, 22(1), 47–61. doi: 10.1007/s10956-012-9375-y Artigue, M. (2002). Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work. International Journal of Computers for Mathematical Learning, 7, 245-274. doi: 0.1023/A:1022103903080 Ball, L.; Drijvers, P.;Ladel, S.; Siller, H.S.; Tabach, M.; Vale, C. (2018). Uses of Technology in Primary and Secondary Mathematics Education: Tools, Topics and Trends. Springer. Blatchford, P.; Bassett, P.; Brown, P.; Koutsoubou, M.; Martin, C.; Russell, A.; Rubie-Davies, C. (2009). Deployment and impact of support staff in schools. Institute of Education, University of London. Bonilla-del-Río, M.; García-Ruiz, M.R.;Pérez-Escoda, A. (2018). Los dispositivos móviles en el aula. Oportunidades y retos para el desarrollo de la competencia mediática. In: M.R. García-Ruiz, A. Pérez-Escoda; M.D. Guzmán-Franco (Eds), Dispositivos móviles en el aula. Docentes y estudiantes prosumidores en la era digital (pp. 11-30). Sevilla, España: Egregius Ediciones. Burnard, P.; Ross, V.;Dragovic, T.; Minors, H.; Powell, K.; Mackinlay, L. (2017). Building Interdisciplinary and Intercultural Bridges: Where Practice Meets Research and Theory. https://doi.org/10.17863/CAM.12138 Clements, D. H.; Sarama, J.; Yelland, N. J.; & Glass, B. (2008). Learning and teaching geometry with computers in the elementary and middle school. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Vol 1. Research synthesis (pp. 109-154), N.C.T.M. Publications, North Carolina. Cobb, P.; Confrey, J.; diSessa, A.; Lehrer, R.; Schauble, L. (2003). Design experiments in educational research. Educational Reseracher, 32(1), 9-13. Collins, A. Toward a Design Science of Education. (1992) In E. Scanlon & T. O’Shea (Eds.), New Directions in Educational Technology, pp. 15–22. Diego-Mantecón, J. M.; Arcera, Ó.; Blanco, T. F.; Lavicza, Z. (2019). An Engineering Technology Problem-Solving Approach for Modifying Student Mathematics-Related Beliefs: Building a Robot to Solve a Rubik’s Cube. International Journal for Technology in Mathematics Education, 26(2), 55-64. Diego-Mantecón, J. M.; García-Piqueras, M.; Blanco, T. F.; Ortiz-Laso, Z. (2018) Problemas en contextos reales para trabajar las matemáticas— Plataforma STEMforYouth. Sociedad de la Información. 58, 29-38. Drijvers, P. Evidence for benefit? Reviewing empirical research on the use of digital tools in mathematics education. (2016) Presented at 13th International Congress on Mathematical Education. Hamburg, Germany. 24–31. Engen, B. K. (2019). Comprendiendo los aspectos culturales y sociales de las competencias digitales docentes. Comunicar: Revista científica iberoamericana de comunicación y educación, 27(61), 9-19. Fenyvesi, K. (2016) Bridges: A World Community for Mathematical Art. Mathematical Intelligencer. Francom, G.M. (2019). Barriers to technology integration: A time-series survey study. Journal of Research on Technology in Education, 52(1), 1-16. doi: 10.1080/15391523.2019.1679055 Greefrath G.; Hertleif, C.; Siller, H. S. (2018) Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software. ZDM Mathematics Education, 50(1), 233-244. doi: 10.1007/s11858-018-0924-6 Instefjord, E.; Munthe, E. (2016) Preparing pre-service teachers to integrate technology: an analysis of the emphasis on digital competence in teacher education curricula. European Journal of Teacher Education, 39(1), 77-93. doi:10.1080/02619768.2015.1100602 Kim, P.; Suh, E.; Song, D. (2015) Development of a design-based learning curriculum through design-based research for a technology-enabled science classroom. Educational Technology Research and Development, 63(4), 575–602. doi:10.1007/s11423-015-9376-7 Lavicza, Z.; Prodromou, T.; Juhos, I.; Koren, B.; Fenyvesi, K.; Hohenwarter, M.; Diego-Mantecon, J.M. (in press). The Need for Educational Research on Technology: Trends and Examples. International Journal for Technology in Mathematics Education. Lavicza, Z.; Hohenwarter, M.; Fenyvesi, C.; Prodromou, T.; Diego-Mantecon, J. M.; Lieban, D. (2018). Mathematics learning through arts, technology and robotics: multi-and transdisciplinary STEAM approaches. p. 110-122. Proceedings of the 8th ICMI-East Asia Regional Conference on Mathematics Education 7-11 May 2018, Taipei, Taiwan. Lavicza, Z. (2010) Integrating technology into mathematics teaching: A review. ZDM: The International Journal of Mathematics Education, 42(1), 105-119. doi:10.1007/s11858-009-0225-1 McKenney, S.; Reeves, T.C. (2013) Systematic review of design-based research progress: Is a little knowledge a dangerous thing? Educational Researcher, 42(2), 97-100. doi:10.3102/0013189x12463781 McKnight, K:; O'Malley, K:; Ruzic, R.; Horsley, M.K.; Franey, J.; Bassett, K. (2016). Teaching in a digital age: How educators use technology to improve student learning. Journal of research on technology in education, 48(3):194-211. Nicolai, S.; Wales, J.; Aiazzi, E. (2016). Education, migration and the 2030 Agenda for Sustainable Development. London: ODI. OECD. (2015). Students, Computers and Learning: Making the Connection, PISA. Paris, France: OECD Publishing. Reinmann, G. (2005). Innovation ohne Forschung? Ein Plädoyer für den Design-Based Research-Ansatz in der Lehr-Lernforschung. Unterrichtswissenschaft, 33(1), 52–69. Roschelle, J.; Kaput, J.; Stroup, W. (2000). SimCalc: Accelerating students’ engagement with the mathematics of change. In M. J. Jacobsen & R. B. Kozma (Eds.), Learning the sciences of the 21st century: Research, design, and implementing advanced technology learning environments (pp. 47-75). Hillsdale, NJ: Erlbaum. Sacristan, A. I.; Noss, R. (2008) Computational construction as a means to coordinate representations of infinity. International Journal of Computers for Mathematical Learning. 13(1):47-70. doi:10.1007/ s10758-008-9127-5. Santana-Vega, L.E.; Gómez-Muñoz, A.M.; Feliciano-García, L. (2019). Uso problemático del móvil, fobia a sentirse excluido y comunicación familiar de los adolescentes. Comunicar: Revista científica iberoamericana de comunicación y educación, 27(59), 39-47 Sarker, M.,N.; Wu, M:; Cao, Q.; Alam, G., M.; Li, D. (2019). Leveraging digital technology for better learning and education: A systematic literature review. International Journal of Information and Education Technology, 9(7):453-61. Starnazzi, C. (2005). Leonardo Codices & Machines (First edition). Florence, Italy: Cartei & Bianchi. Stormowski, V. (2015). Formação de professores de matemática para o uso de tecnologia: Uma experiência com o GeoGebra na modalidade EAD. Porto Alegre: PhD Thesis of PPGIE, UFRGS. Brazil. Tejera, M., Aguilar, G., & Lavicza, Z. (2022). Modelling and 3D Printing Architectural Models - A Way to Develop STEAM Projects for Mathematics Classrooms. In Learning Mathematics in the Context of 3D Printing, (pp. 231-251). Springer Nature. Villarreal, M. (2000). Mathematical thinking and intellectual technologies: The visual and the algebraic. For the Learning of Mathematics. 20(2), 2-7. Wachira, P.; Keengwe, J. (2011). Technology integration barriers: Urban school mathematics teachers perspectives. Journal of Science Education and Technology, 20(1), 17-25. doi: 10.1007/s10956-010-9230-y Wang, F.; Hannafin, M.J. (2005). Design-based research and technology-enhanced learning environments. Educational technology research and development, 4(5), 5-23. doi:10.1007/bf02504682 Weinhandl, R.; Lavicza, Z. (2019). Exploring essential aspects when technology-enhanced flipped classroom approaches are at the heart of professional mathematics teacher development courses. International Journal for Technology in Mathematics Education, 26 (3), 139-144. doi:10.1564/tme_v26.3.05
Proyectos
Cantidad de páginas
14