Desarrollo de la estimación de cantidades continuas en la magnitud volumen a través de la implementación de la modelación como estrategia de enseñanza y aprendizaje
Tipo de documento
Autores
Lista de autores
Agudelo, Yaneth Milena y García, Ligia Inés
Resumen
Este estudio se centra en el análisis del desarrollo de la capacidad estimativa en la magnitud volumen en estudiantes de grado 9° de Educación Básica Secundaria del sistema educativo colombiano. En este trabajo se implementó la modelación como estrategia de Enseñanza desde los trabajos de Biembengut y Hein (2004) a partir de una secuencia didáctica que pretendió desarrollar la habilidad de estimar volúmenes ocupados. Los resultados muestran cómo las estudiantes evaluadas mejoraron ostensiblemente la habilidad de estimar magnitudes continuas en volumen ocupado, concretamente usando la estrategia de iteración y la de comparar un referente presente usando técnicas indirectas, estableciendo relaciones métricas más elaboradas.
Fecha
2016
Tipo de fecha
Estado publicación
Términos clave
Gestión de aula | Modelización | Pensamientos matemáticos | Tridimensional
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
46
Rango páginas (artículo)
139-158
ISSN
18150640
Referencias
Axpe, M. (s.f). La investigación etnográfica en el campo de la educación. Una aproximación meta–analítica. Tesis de Doctorado. Biembengut, M. & Hein, N. (2004) Modelación matemática y los desafíos para enseñar matemática. Educación Matemática, V. 16 (2), p.105-125. Biembengut, M. & Hein, N. (s.f) Modelo, modelación y modelaje: Métodos de enseñanza-aprendizaje de matemáticas. Departamento de matemática – CCEN, Universidad Regional de Blumenau. Recuperado de: http://matesup.utalca.cl/modelos/articulos/modelacion_mate2.pdf. Blomhøj, M., (2004) Mathematical modelling – a theory for practice. International perspectives on learning and teaching mathematics. National center for mathematics education. Suecia, pp. 45-159. Bressan, A. & Bogisic, B. (1996) La estimación, una forma importante de pensar en matemática. Biblioteca Nacional de Maestros. Recuperado de: http://www.bnm.me.gov.ar/giga1/documentos/EL000516.pdf. Callís, J. & Fiol, L. (s.f) Características y factores incidentes en la estimación métrica longitudinal, p. 161-169. Cañón, M., (2009) Orientaciones didácticas al tratamiento de la longitud en la escuela: del reconocimiento de atributos a la comprensión de los procesos de conservación. En: ENCUENTRO COLOMBIANO DE MATEMÁTICA EDUCATIVA. ASOCOLME. Memorias del 9° encuentro Colombiano de Matemática Educativa. Valledupar, Cesar. p. 141-146. Castillo, J., Segovia, I., Castro, E., & Molina, M. (2011) Estudio sobre la estimación de cantidades continuas: Longitud y superficie. Trabajo presentado en el Seminario de Investigación Pensamiento Numérico y Algebraico e Historia de la Matemática y la Educación Matemática, Granada, 17-19 febrero. Chamorro, M., & Belmonte, J. (1991) El problema de la medida. Didáctica de las magnitudes lineales. Madrid: Síntesis. Chamorro, M. (1995). Aproximación a la medida de magnitudes en la Enseñanza Primaria. UNO revista de Didáctica de las Matemáticas, n° J, pp. 31-53. Colección Cuadernos de Matemática Educativa, cuaderno no. 5 (2002) Estándares curriculares - área matemáticas: aportes para el análisis. Asociación colombiana de matemática educativa, ASOCOLME. Córdoba, F. J. (2011) La modelación en matemática educativa: una práctica para el trabajo de aula en ingeniería. Tesis de maestría. Instituto Politécnico Nacional. México, Distrito Federal. Dickson, L.; Brown, M. & Gibson, O. (1991) El aprendizaje de las matemáticas. Madrid: editorial Labor, S.A. Duval, R. (2006) Un tema crucial en la Educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de la RSME, V. 9.1, pp. 143 - 168. Godino, J. (2002) Perspectiva ontosemiótica de la competencia y comprensión matemática. XVI Convengo Nazionale: Incontri de la Matemática. Castel San Prieto Terme Bologna. Novembre. Godino, J.; Batanero, C. & Roa, R. (2002) Proyecto Edumat-Maestros. Febrero. Recuperado de: http://www.ugr.es/~jgodino/edumat-maestros/manual/5_Medida.pdf Manotas, M., & Rojas, C., (2008) Conceptualización acerca del perímetro, área y volumen en tres alumnos universitarios. Zona próxima, No. 9, p. 60 - 69. Ministerio de Educación Nacional. (1998). Lineamientos curriculares. Matemáticas. Bogotá: Magisterio. Otero, M. & Banks-Leite, L. (2006) Modelos mentales y modelos numéricos: Un estudio descriptivo en la enseñanza media. Relime. V. 9, (1), p. 151-178. Raviolo, A., Moscato, M., &Schnersch, A. (2005) Enseñanza del concepto de densidad a través de un modelo analógico. Revista de Enseñanza de la Física, vol. 18, N° 2. p. 93-103. Sáiz, M. (2003) Algunos objetos mentales relacionados con el concepto volumen de maestros de primaria. Revista mexicana de investigación educativa, V. 8 (18), p. 447- 478. Sáiz, M. (s.f) El volumen ¿por dónde empezar? Recuperado de: http://www.matedu.cinvestav.mx/~maestriaedu/docs/asig4/ConfMagist.pdf Sanmiguel, A. & Salinas, M. (2011) Dificultades en el razonamiento del alumnado de 2° de ESO relacionadas con el concepto de volumen y su medida. En Marín, M; Fernández, G.; Blanco, L.; Palarea, M. (Eds.), Investigación en Educación Matemática XV.543-554. Ciudad Real: Sociedad Española de Investigación en Educación Matemática, SEIEM. Saucedo, G. (2009) Hacia la construcción del concepto de volumen. En Zapico, I., & Tajeyan, S. (Ed.), Acta de la VII Conferencia Argentina de Educación Matemática. República Argentina, ciudad de Buenos Aires: SOAREM. Sociedad Argentina de Educación Matemática. Trigueros, M., (2009). El uso de La modelación en la enseñanza de las matemáticas. Revista Innovación educativa, V. 9(46), p. 75-87. Villa, J. A. (2007). La modelación como proceso en el aula de matemáticas. Un marco de referencia y un ejemplo. Tecno Lógicas. 19. 51-81