Efectos de la riqueza perceptual de imágenes y objetos en la comprensión de la palabra número tres en niños en la etapa preescolar
Tipo de documento
Autores
Lista de autores
Rodríguez, Jimena, Martí, Eduardo y Salsa, Analía
Resumen
Este estudio analiza los efectos de la riqueza perceptual de colecciones de objetos e imágenes en la comprensión de la palabra número “tres”. Participaron 80 niños de 3 años distribuidos aleatoriamente a una de cinco condiciones (cuatro de intervención y una de control). Durante cinco encuentros se realizaron el pretest (tarea Dame un Número), tres sesiones de intervención y evaluaciones parciales (tarea Señala X) y el postest (Dame un Número). Los resultados muestran que la condición imágenes sin riqueza perceptual (colecciones de círculos negros) fue la que impactó más positivamente en el desempeño infantil. Además, las imágenes y los objetos (tapas negras de botella) sin riqueza perceptual, en comparación con las condiciones con riqueza perceptual (imágenes coloridas de animales y bloques de construcción), permitieron un avance más rápido y significativo en el desempeño en el transcurso de las sesiones de intervención. Estos hallazgos señalan que, para esta edad y en relación con la comprensión cardinal de la palabra número tres, la riqueza perceptual de imágenes y objetos tendría efectos disruptivos. Se discuten las implicaciones educativas de estos resultados.
Fecha
2023
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Referencias
Benoit, L., Lehalle, H., y Jouen, F. (2004). Do young children acquire number words through subitizing or counting? Cognitive Development, 19(3), 291–307. Bruner, J. (1986). Actual minds, possible worlds. Harvard University Press. Carbonneau, K. J., y Marley, S. C. (2015). Instructional guidance and realism of manipulatives influence preschool children’s mathematics learning. The Journal of Experimental Education, 83(4), 495–513. https://doi.org/10.1080/00220973.2014.989306 Carbonneau, K. J., Min Wong, R., y Borysenko, N. (2020). The influence of perceptually rich manipulatives and collaboration on mathematic problem-solving and perseverance. Contemporary Educational Psychology, 61, 1-11. https://doi.org/10.1016/j. cedpsych.2020.101846 Carey, S. (2009). The origins of concepts. Oxford University Press. Chiong, C., y DeLoache, J. (2012). Learning the ABC’s: what kinds of picture books facilitate young children’s learning? Journal of Early Childhood Literacy, 13(2), 225–241. Condry, K., y Spelke, E. S. (2008). The development of language and abstract concepts: The case of natural number. Journal of Experimental Psychology, 137(1), 22-38. Davidson, K., Eng, K., y Barner, D. (2012). Does learning to count involve a semantic induction? Cognition, 123(1), 162–173. DeLoache, J. S. (2002). Symbolic artifacts: Understanding and use. En U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 206-226). Blackwell Publishing. DeLoache, J. S. (1995). Early understanding and use of symbols: The model model. Current Directions in Psychological Science, 4, 109-113. 109 Educación MatEMática, vol. 35, núM. 1, abril dE 2023 Jimena Rodríguez, Eduardo Martí, Analía Salsa Gelman, S. A., Chesnick, R. J., y Waxman, S. R. (2005). Mother-child conversations about pictures and objects: Referring to categories and individuals. Child Development, 76(6), 1129–1143. https://doi.org/10.1111/j.1467-8624.2005.00876.x-i1 Gelman, R., y Gallistel, C. R. (1978). The child’s understanding of number. Harvard University Press. Gelman, R., y Meck, E. (1983). Preschooler’s counting: principles before skill. Cognition, 13, 343-360. Huang, Y., Spelke, E., y Snedeker, J. (2010). When is four far more than three? Children’s generalization of newly-acquired number words. Psychological Science, 21(4), 600606. https://doi.org/10.1177/0956797610363552 Kaminski, J. A., Sloutsky, V. M., y Heckler, A. (2009). Transfer of mathematical knowledge: The portability of generic instantiations. Child Development Perspectives, 3(3), 151155. https://doi.org/10.1111/j.1750-8606.2009.00096.x Kaminski, J., y Sloutsky, V. (2020). The use and effectiveness of colorful, contextualized, student-made material for elementary mathematics instruction. International Journal of STEM Education, 7(6), 1-23. https://doi.org/10.1186/s40594-019-0199-7 Krajcsi, A. (2021). Follow-up questions influence the measured number knowledge in the Give-a-number task. Cognitive Development, 57, 100968. https://doi.org/10.1016/j. cogdev.2020.100968 Le Corre, M., y Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395-438. Marchand, E., Lovelett, J., Kendro, K., y Barner, D. (2022). Assessing the knower-level framework: How reliable is the Give-a-number task? Cognition, 222, 104998. https:// doi.org/10.1016/j.cognition.2021.104998 Martí, E., y Scheuer, N. (2015) Semiotic systems, culture and early mathematical knowledge. Estudios de Psicología, 36, 1-17. Martí, E. (2003). Representar el mundo externamente. Machado. McNeil, N., Uttal, D., Jarvin, L., y Sternberg, R. (2009). Should you show me the money? Concrete objects both hurt and help performance on mathematics problems. Learning and Instruction, 19, 171-184. Mix, K. S., Huttenlocher, J., y Levine, S. C. (2002). Quantitative development in infancy and early childhood. Oxford University Press. Pérez-Echeverría. M. P., y Scheuer, N. (2009). External Representations as Learning Tools: An Introduction. En C. Andersen, N. Scheurer, M. P. Pérez Echeverría, y E. Teubal (Eds.), Representational Systems and Practices as Learning Tools (p. 1-17). Sense Publishers. https://doi.org/10.1163/9789087905286_002 Educación MatEMática, vol. 35, núM. 1, abril dE 2023 110 Efectos de la riqueza perceptual de imágenes y objetos en la comprensión de la palabra número tres... Petersen, L., y McNeil, N. (2012). Effects of perceptually rich manipulatives on preschooler’s counting performance: Established knowledge counts. Child Development, 84(3), 1020-1033. https://doi.org/10.1111/cdev.12028 Petersen, L. A., McNeil, N. M., Tollaksen, A. K., Boehm, A. G., Hall, C. J., Carrazza, C., y Devlin, B. L. (2014). Counting practice with pictures, but not objects, improves children’s understanding of cardinality. En P. Bello, M. Guarini, M. McShane, y B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 2633-2637). Cognitive Science Society. Piaget, J. (1970). Science of education and the psychology of the child. Orion Press. Rodríguez, J., Martí, E., y Salsa, A. M. (2018). Symbolic representations and cardinal knowledge in 3- and 4-year-old children. Cognitive Development, 48, 235-243. https:// doi.org/10.1016/j.cogdev.2018.09.004 Sarnecka, B. (2015). Learning to represent exact numbers. Synthese, 1–18. https://doi. org/10.1007/s11229-015-0854-6 Sarnecka, B., y Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108, 662-674. https://doi.org/10.1016/j.cognition.2008.05.007 Sarnecka, B., y Lee, M. (2009). Levels of number knowledge during early childhood. Journal of Experimental Child Psychology, 103, 325-337. https://doi.org/10.1016/j. jecp.2009.02.007 Sfard, A. (2000). Symbolizing mathematical reality into being: How mathemati-cal discourse and mathematical objects create each other. En P. Cobb, K. E. Yackel, y K. McClain (Eds.), Symbolizing and communicating: Perspectives on mathematical discourse, tools, and instructional design (pp. 37–98). Lawrence Erlbaum Associates, Inc Sfard, A., y Lavie, I. (2005). Why cannot children see as the same what grown-ups cannot see as different? Early numerical thinking revisited. Cognition and Instruction, 23, 237-309. https://doi.org/10.1207/s1532690xci2302_3 Spaepen, E., Gunderson, E. A., Gibson, D., Goldin-Meadow, S., y Levine, S. C. (2018). Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering. Cognition, 180, 59-81. https://doi. org/10.1016/j.cognition.2018.06.012 Strouse, G.A., Nyhout, A., y Ganea, P.A. (2018). The role of book features in young children’s transfer of information from picture books to real-world contexts. Frontiers in Psychology, 9, 50. https://doi.org/10.3389/fpsyg.2018.00050 Tare, M., Chiong, C., Ganea, P., y DeLoache, J. S. (2010). Less is more: How manipulative features affect children’s learning from picture books. Journal of Applied Developmental Psychology, 31, 395-400. 111 Educación MatEMática, vol. 35, núM. 1, abril dE 2023 Jimena Rodríguez, Eduardo Martí, Analía Salsa Tolchinsky, L. (2007). Usar la lengua en la escuela. Revista Iberoamericana de Educación, 46, 37-54. Uttal, D., Scudder, K., y DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete to teach mathematics. Journal of Applied Developmental Psychology, 18, 37-54. Uttal, D., Amaya, M., Maita, M. R., Liu Hand, L., Cohen, C., O’Doherty, K., y De-Loache, J. S. (2013). It works both ways: Transfer difficulties between manipulatives and written subtractions solutions. Child Development Research, 2013, 1-13. https://doi. org/10.1155/2013/216367 van Marle, K., Chu, F. W., Li, Y., y Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17(4), 492-505. Wagner, K., Chu, J., y Barner, D. (2019). Do children’s number words begin noisy? Developmental Science, 22(1), e12752. https://doi.org/10.1111/desc.12752 Walkerdine, V. (1988). The mastery of reason. Routledge. Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155-193. https://doi. org/10.1016/0010-0277(90)90003-3 Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24, 220-251. https://doi.org/10.1016/0010-0285(92)90008-P
Proyectos
Cantidad de páginas
26