Experiences of problem solving in whole class interactions
Tipo de documento
Autores
Lista de autores
Ingram, Jenni y Riser, Paul
Resumen
Problem solving is often considered to be an essential part of learning mathematics. In this paper we examine the whole class interactions around problems and problem solving as they naturally occur in mathematics classrooms. Thus, we are examining students’ ordinary experiences of problem solving in their everyday mathematics lessons. Our analysis shows how students’ participate in a very narrow range of problem solving actions and that the actions that they do participate in are controlled by the teacher. This raises implications for what students perceive and interpret problem solving to be in mathematics.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Interacciones | Otra (fuentes) | Otro (marcos) | Resolución de problemas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
16
Rango páginas (artículo)
43-55
ISSN
22544313
Referencias
Chan, M. C. E., & Clarke, D. (2017). Structured affordances in the use of open-ended tasks to facilitate collaborative problem solving. ZDM, 49(6), 951-963. https://doi.org/10.1007/ s11858-017-0876-2 Cockroft, W. H. (1982). Mathematics counts: Report of the Committee of Inquiry into the Teaching of Mathematics in Schools. London. Retrieved September 2019 from http://www.educationengland.org.uk/documents/cockcroft/cockcroft1982.html Coles, A. (2013). On metacognition. For the Learning of Mathematics, 33(1), 21-26. Conner, A. M., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401-429. https://doi.org/10.1007/s10649-014-9532- 8 Cramer, J. C., & Knipping, C. (2018). Participation in argumentation. In U. Gellert, C. Knipping, & H. Straehler-Pohl (Eds.), Inside the mathematics class. Sociological perspectives on participation, inclusion, and enhancement (pp. 229-244). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-79045-9_11 Eckert, A., & Nilsson, P. (2017). Introducing a symbolic interactionist approach on teaching mathematics: The case of revoicing as an interactional strategy in the teaching of probability. Journal of Mathematics Teacher Education, 20(1), 31-48. https://doi.org/10.1007/s10857-015-9313-z English Department for Education (2013). Mathematics programmes of study : key stage 3 national curriculum in England, (September), 2-9. Retrieved September 2019 from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239 058/SECONDARY_national_curriculum_-_Mathematics.pdf Erath, K. (2017). Implicit and explicit processes of establishing explaining practices - Ambivalent learning opportunities in classroom discourse. In T. Dooley & G. Gueudet (Eds.), Proceedings of the 10th Congress of Research in Mathematics Education (pp. 1260-1267). Dublin, Ireland: DCU Institute of Education & ERME. Erath, K., Prediger, S., Quasthoff, U., & Heller, V. (2018). Discourse competence as important part of academic language proficiency in mathematics classrooms: the case of explaining to learn and learning to explain. Educational Studies in Mathematics, 99(2), 161-179. https://doi.org/10.1007/s10649-018-9830-7 Felmer, P., Pehkonen, E., & Kilpatrick, J. (Eds.). (2016). Posing and solving mathematical problems: Advances and new perspectives. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-28023-3_20 Goizueta, M. (2019). Epistemic issues in classroom mathematical activity: There is more to students’ conversations than meets the teacher’s ear. The Journal of Mathematical Behavior, 55. https://doi.org/10.1016/j.jmathb.2019.01.007 Goizueta, M., & Planas, N. (2013). Temas emergentes del análisis de interpretaciones del profesorado sobre la argumentación en clase de matemáticas. Enseñanza de las Ciencias, 31(1), 61-78. https://doi.org/10.5565/rev/ec/v31n1.835 Guberman, R., & Leikin, R. (2013). Interesting and difficult mathematical problems: Changing teachers’ views by employing multiple-solution tasks. Journal of Mathematics Teacher Education, 16(1), 33-56. https://doi.org/10.1007/s10857-012- 9210-7 Herbel-Eisenmann, B., Drake, C., & Cirillo, M. (2009). “Muddying the clear waters”: Teachers’ take-up of the linguistic idea of revoicing. Teaching and Teacher Education, 25(2), 268-277. https://doi.org/10.1016/j.tate.2008.07.004 Hodgen, J., Foster, C., & Kuchemann, D. (2017). Improving mathematics in key stages two and three. Retrieved September 2019 from https://educationendowmentfoundation.org.uk/public/files/Publications/Campaigns/Maths/KS2_KS3_Maths_G uidance_2017.pdf Ingram, J. (2018). Moving forward with ethnomethodological approaches to analysing mathematics classroom interactions. ZDM, 50(6), 1065-1075. https://doi.org/ 10.1007/s11858-018-0951-3 Ingram, J., Andrews, N., & Pitt, A. (2019). When students offer explanations without the teacher explicitly asking them to. Educational Studies in Mathematics, 101(1), 51-66. https://doi.org/10.1007/s10649-018-9873-9 Kaur, B., & Toh, T. L. (2011). Mathematical problem solving: Linking theory and practice. In O. Zaslavsky & P. Sullivan (Eds.), Constructing knowledge for teaching secondary mathematics (pp. 177-188). Boston, MA: Springer. https://doi.org/ 10.1007/978-0-387-09812-8 Kim, M., & Roth, W. M. (2018). Dialogical argumentation in elementary science classrooms. Cultural Studies of Science Education, 13(4), 1061-1085. https://doi.org/ 10.1007/s11422-017-9846-9 Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82. https://doi.org/10.1016/j.jmathb.2007.02.001 Lee, Y.-A. (2007). Third turn position in teacher talk: Contingency and the work of teaching. Journal of Pragmatics, 39(6), 1204-1230. https://doi.org/ 10.1016/j.pragma.2006.11.003 Marton, F., & Tsui, A. B. M. (2004). Classroom discourse and the space of learning. Mahwah, NJ: Lawrence Erlbaum Associates. Mason, J. (2016). When is a problem...? “when” is actually the problem! In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems: Advances and new perspectives (pp. 263-285). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-28023-3 Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nd Ed.). Harlow, England: Pearson. https://doi.org/10.12968/eyed.2013.15.2.18 O’Connor, M. C., & Michaels, S. (1993). Aligning academic task and participation status through revoicing: Analysis of a classroom discourse strategy. Anthropology and Education Quarterly, 24(4), 318-335. Pólya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense-making in mathematics. In D. A. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan. Sidnell, J. (2010). Conversation analysis: An introduction. Chichester, England: Wiley- Blackwell. Sidnell, J., & Stivers, T. (2012). The handbook of conversation analysis. Oxford, England: Wiley-Blackwell. Staples, M. (2007). Supporting whole-class collaborative inquiry in a secondary mathematics classroom. Cognition and Instruction, 25(2-3), 161-217. Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313-340. https://doi.org/10.1080/10986060802229675 Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American Educational Research Journal, 33(2), 455-488. https://doi.org/10.3102/00028312033002455 Thompson, P. W. (1985). Experience, problem solving, and learning mathematics: Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 189-243). Hillsdale, NJ: Erlbaum. Whitenack, J. W., & Knipping, N. (2002). Argumentation, instructional design theory and students’ mathematical learning: A case for coordinating interpretive lenses. Journal of Mathematical Behavior, 21(4), 441-457. https://doi.org/10.1016/S0732- 3123(02)00144-X Wood, T. (1988). Patterns of interaction and the culture of mathematics classrooms. In S. Lerman (Ed.), Cultural perspectives on the mathematics classroom (pp. 149- 168). Dordrecht, Netherlands: Kluwer Academic Publishers. Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. The Journal of Mathematical Behavior, 21(4), 423-440. https://doi.org/10.1016/S0732-3123(02)00143-8 Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458-477.