Instrumentación corporeizada: combinando diferentes puntos de vista sobre el uso de la tecnología digital en la educación matemática
Tipo de documento
Autores
Lista de autores
Drijvers, Paul
Resumen
El potencial de la tecnología digital para la educación matemática ha sido ampliamente investigado en las últimas décadas. Aun así, queda mucho por saber acerca de cómo usar las herramientas para fomentar el aprendizaje de las matemáticas. Para abordar esta cuestión, primero considero las funcionalidades didácticas de la tecnología digital en la educación matemática y los modestos efectos generales del uso de estas herramientas para el aprendizaje. Luego, para encontrar posibles explicaciones de estos hallazgos, abordo tres enfoques relevantes: (1) un enfoque de la Educación Matemática Realista (EMR) sobre el uso de herramientas, (2) un enfoque instrumental para el uso de herramientas y (3) un enfoque corporeizado sobre la cognición. Como conclusión, afirmo que las tres lentes comparten un enfoque en el significado matemático. Mientras que el enfoque de la EMR proporciona pautas generales importantes, un enfoque integrador para el uso de herramientas, que denomino instrumentación corporeizada, y que incluye la alineación cuidadosa de las experiencias corporeizada.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Funcional | Otro (cognición) | Software | Tipos de metodología
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
X Congreso Internacional sobre Enseñanza de las Matemáticas - ACTAS CIEM
Editores (actas)
Lista de editores (actas)
Iparraguirre, Cecilia, Salazar, Jesús y Ugarte, Francisco
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
19-43
ISBN (actas)
Referencias
Abrahamson, D. (2009). Embodied design: Constructing means for constructing meaning. Educational Studies in Mathematics, 70(1), 27–47. Abrahamson, D. (2014). Building educational activities for understanding: An elaboration on the embodied-design framework and its epistemic grounds. International Journal of ChildComputer Interaction, 2(1), 1–16. Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M. (2016). Eye-tracking Piaget: capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4–5), 218–244. 38 39 Ainley, J, Pratt, D., & Hansen, A., (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23–38. Alberto, R. A., Bakker, A., Walker-van Aalst, O., Boon, P., & Drijvers, P. (2019). Networking theories with design research: An embodied instrumentation case study in trigonometry. Paper presented at the Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht, the Netherlands, 6-10 February, 2019. Alibali, M. W., & Nathan, M. J. (2012): Embodiment in mathematics teaching and learning: Evidence from learners' and teachers' gestures. Journal of the Learning Sciences, 21, 247– 286. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. Artigue, M., Cazes, C., Haspekian, M., Khanfour-Armale, R., & Lagrange, J.-B. (2013). Gestes, cognition incarnée et artefacts : une analyse bibliographique pour une nouvelle dimension dans les travaux didactiques au LDAR. [Gesture, embodied cognition and artefacts: a literature analysis for a new dimension in the didactical work at LDAR.] Paris, France: LDAR. Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics, 70(2), 97–109. Bakker A., Shvarts A., Abrahamson D. (2019). Generativity in Design Research: The Case of Developing a Genre of Action-Based Mathematics Learning Activities. Paper presented at the Eleventh Congress of the European Society for Research in Mathematics Education [TWG 17: Theoretical Perspectives and Approaches in Mathematics Education], Utrecht, February 6–10, 2019. Ball, L., Drijvers, P., Ladel, S., Siller, H.-S., Tabach, M., & Vale, C. (Eds.) (2018). Uses of technology in primary and secondary mathematics education; Tools, topics and trends. Cham, Switzerland: Springer International Publishing. Bikner-Ahsbahs, A., & Prediger, S. (2014). Networking of theories as a research practice in mathematics education. Dordrecht, the Netherlands: Springer. Cheung, A. C. K., & Slavin, R. E. (2013). The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: a meta-analysis. Educational Research Review, 9, 88–113. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge. de Freitas, E., & Sinclair, N. (2014). Mathematics and the body. New York, NY: Cambridge University Press. Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education, 10(6), 1243–1267. 39 40 Drijvers, P. (2018a). Empirical evidence for benefit? Reviewing quantitative research on the use of digital tools in mathematics education. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education; Tools, topics and trends (pp. 161–178). Cham, Switzerland: Springer International Publishing. Drijvers, P. (2018b). Tools and taxonomies: a response to Hoyles. Research in Mathematics Education, 20(3), 229–235. Drijvers, P., & Barzel, B. (2012). Equations with technology: different tools, different views. Mathematics Teaching, 228, 14–19. Drijvers, P., Boon, P., Doorman, M., Bokhove, C., & Tacoma, S. (2013). Digital design: RME principles for designing online tasks. In C. Margolinas (Ed.), Proceedings of ICMI Study 22 Task Design in Mathematics Education (pp. 55–62). Clermont-Ferrand, France: ICMI. Drijvers, P., Boon, P., & Van Reeuwijk, M. (2011). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179–202). Rotterdam: Sense. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234. Duijzer, A.C.G., Shayan, S., Bakker, A., van der Schaaf, M. F. & Abrahamson, D. (2017). Touchscreen tablets: coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8, 1–19. Duijzer, C., Van den Heuvel-Panhuizen, M., Veldhuis, M., Doorman, M., & Leseman, P. (2019). Embodied learning environments for graphing motion: a systematic literature review. Educational Psychology Review, 31(3), 597 – 629. Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92, 1–19. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, the Netherlands: Reidel Publishing Company. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, the Netherlands: Reidel Publishing Company. Gravemeijer, K. P. E., & Doorman, L. M. (1999). Context problems in realistic mathematics education: a calculus course as an example. Educational Studies in Mathematics, 39(1–3), 111–129. Haspekian, M. (2014). Teachers’ instrumental genesis when integrating spreadsheet software. In A., Clark-Wilson, O. Robutti, & N. Sinclair, N. (Eds.), The mathematics teacher in the digital era (pp. 241–276). New York, NY: Springer. 40 41 Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. Research in Mathematics Education, 20(3), 209–228. Hoyles, C., & Lagrange, J.-B. (Eds.) (2010). Mathematics education and technology: rethinking the terrain. New York, NY: Springer. Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second International Handbook of Research in Mathematics Education (pp. 323–349). Dordrecht: Kluwer. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. Basic Books. Leung, A., & Baccaglini-Frank, A. (Eds.) (2017). Digital technologies in designing mathematics education tasks. Potential and pitfalls. New York, NY: Springer. Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students' mathematics learning. Educational Psychology Review, 22, 215–243. Margolinas, C., & Drijvers, P. (2015). Didactical engineering in France; an insider’s and an outsider’s view on its foundations, its practice and its impact. ZDM–Mathematics Education, 47(6), 893–903. Maschietto, M., & Bartolini-Bussi, M. (2009). Working with artefacts: Gestures, drawings and speech in the construction of the mathematical meaning of the visual pyramid. Educational Studies in Mathematics, 70(2), 143–157. Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri Elem e-books in primary school mathematics. ZDM–Mathematics Education, 45(7), 959–971. Monaghan, J., Trouche, L., & Borwein, J. (2016). Tools and mathematics. Cham, Switzerland: Springer International Publishing. OECD (2015). Students, computers and learning. Making the connection. Paris, France: OECD Publishing. http://www.oecd.org/edu/students-computers-and-learning-9789264239555- en.htm. Piaget, J. (1985). The equilibration of cognitive structures. Cambridge, MA: Harvard University Press. Proust, C. (2012). Masters’ writings and students’ writings: school material in Mesopotamia. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources. Mathematical curriculum materials and teacher development (pp. 161–179). New York, NY: Springer. Rabardel, P. (2002). People and technology – A cognitive approach to contemporary instruments. http://ergoserv.psy.univ-paris8.fr. Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70, 111–126. Robutti, O. (2006). Motion, technology, gesture in interpreting graphs. International Journal for Technology in Mathematics Education, 13(3), 117–126. 41 42 Shvarts, A. (2018). A dual eye-tracking study of objectification as student–tutor joint activity appropriation, In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.). Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, Vol. 4 (pp. 171–178). Umeå, Sweden: PME. Shvarts, A., & Abrahamson, D. (2019). Dual-eye-tracking Vygotsky: A microgenetic account of a teaching/learning collaboration in an embodied-interaction technological tutorial for mathematics. Learning, Culture and Social Interaction, 22, 100316. Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K–12 students’ mathematical learning. Journal of Educational Psychology, 105(4), 970–987. Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction – The Wiskobas project. Dordrecht, the Netherlands: D. Reidel Publishing Company. Trgalová, J., Clark-Wilson, A., & Weigand, H.-G. (2018). Technology and resources in mathematics education. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven, Developing Research in Mathematics Education. Twenty Years of Communication and Collaboration in Europe (pp. 142–161). New York, NY: Routledge. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students' command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307. Trouche, L., & Drijvers, P. (2010). Handheld technology: Flashback into the future. ZDM – Mathematics Education, 42(7), 667–681. Van den Heuvel-Panhuizen, M. (2014). Didactical phenomenology. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 174–176). Dordrecht, Heidelberg, New York, London: Springer. Van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 521–525). Dordrecht, Heidelberg, New York, London: Springer. Vergnaud, G. (1987). About constructivism, a reaction to Hermine Sinclair’s and Jeremy Kilpatrick’s papers. In J. Bergerson, N. Herscovics & C. Kieran (Eds.), Proceedings of the 11th conference of the international group for the psychology of mathematics education, Vol 1 (pp. 73–80). Montréal, Canada: University of Montréal. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of though in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77– 101. Vygotsky, L.S. (1978). Mind in society: the development of higher psychological processes. Cambridge, MA: Harvard University Press. 42 43 Wilson, A. D., & Golonka, S. (2013). Embodied Cognition is not what you think it is. Frontiers in psychology, 4(58). Young, J. (2017). Technology-enhanced mathematics instruction: A second-order metaanalysis of 30 years of research. Educational Research Review, 22, 19–33.
Proyectos
Cantidad de páginas
25