La base de orientación en la resolución de problemas: “cuando me bloqueo o me equivoco”
Tipo de documento
Autores
Lista de autores
Villalonga, Joana y Deulofeu, Jordi
Resumen
Ante los indicios de que el uso de una adecuada base orientación contribuye en la adquisición de la competencia de resolución de problemas, con el presente artículo se pretende examinar parte de aquellos indicios que contribuyen a dicha afirmación al tiempo que profundizar en su interpretación. Para ello se consideran las resoluciones de un problema matemático utilizando una base de orientación por alumnos de entre 11 y 13 años de edad. El estudio se centra en explorar cómo la dimensión dedicada al atasco, que comprende el común error y el temido bloqueo, se ve reflejada en las resoluciones de los alumnos. El análisis llevado a cabo confirma la importancia de la dimensión dedicada al atasco en la base de orientación y su implicación tanto en el proceso de aprendizaje de los alumnos como en la práctica de los docentes. Entretanto, se obtiene una clasificación de las distintas situaciones de atasco y su vinculación con las nueve dimensiones de la base de orientación utilizada.
Fecha
2017
Tipo de fecha
Estado publicación
Términos clave
Competencias | Estrategias de solución | Otro (aprendizaje) | Práctica del profesor
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Referencias
Burgués, C., & Sarramona, J. (Eds.). (2013). Competències bàsiques de l’àmbit matemàtic: A favor de l’èxit escolar. Identificació i desplegament a l’educació secundària obligatòria. Direcció General ESO i Batxillerat. Departament d’Ensenyament. Generalitat de Catalunya. Consultado en: http://ensenyament.gencat.cat/web/.content/ home/departament/publicacions/colleccions/competencies-basiques/eso/eso-matematic.pdf [marzo 2016] De Corte, E., Verschaffel, L., & Greer, B. (2000a). Connecting mathematics problem solving to the real world. In A. Rogerson (Ed.), Proceedings of the International Conference on Mathematics Education into the 21st Century: Mathematics for living (pp. 66-73). Amman, Jordan: The Hong Kong Institute of Education. De Corte, E., Verschaffel, L., & Op’t Eynde, P. (2000b). Self-regulation: A characteristic and a goal of mathematics learning. In M. Boekaerts, P. Pintrich & M. Zeidner (Eds.), Handbook of self-regulation (pp. 687–726). San Diego: Academic Press. De Corte, E., & Verschaffel, L. (2003). El desarrollo de habilidades de autorregulación en la solución de problemas matemáticos. Pensamiento Educativo, 32, 286305. Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically. Wokingham: Addison-Wesley. Niss, M. A., & Højgaard, T. (Eds.) (2011). Competencies and Mathematical Learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde: Roskilde Universitet. (IMFUFAtekst: i, om og med matematik og fysik; No. 485). Pólya, G. (1945). How to solve it. Princeton: Princeton University Press. Sanmartí, N. (2002). Didáctica de las ciencias en la educación secundaria obligatoria. Barcelona, España: Síntesis Educación. Sanmartí, N. (2007). Evaluar para aprender: 10 ideas clave. Barcelona, España: GRAÓ. Schoenfeld, A. H., (1983). The wild, wild, wild, wild, wild world of problem solving (A review of sorts). For the Learning of Mathematics, 3(3), 4047. Schoenfeld, A. H. (2007). What is mathematical proficiency and how can it be assessed? Assessing Mathematical Proficiency. MSRI Publications, 53, 5973. Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics Enthusiast (TME), 10(1y2), 934. Villalonga, J., & Deulofeu, J. (2015). La base de orientación en la resolución de problemas. En FESPM, SEMRM (Eds.) Actas JAEM 2015. 17 Jornadas para el aprendizaje y la enseñanza de las matemáticas (pp.36, n.68). Cartagena, España: Pedro Ángel Sánchez Martínez, S.L.U.