La comprensión de las funciones exponencial y logarítmica: una mirada desde las conexiones matemáticas y el Enfoque Ontosemiótico
Tipo de documento
Autores
Lista de autores
Campo, Karen Gisel y García-García, Javier
Resumen
Se propone y se valora un marco de referencia para estudiar la comprensión a partir del establecimiento de conexiones matemáticas y algunos constructos del Enfoque Ontosemiótico. Para ello, se tomó el caso de 10 estudiantes mexicanos de bachillerato cuando resolvían tareas sobre las funciones exponencial y logarítmica. Se empleó la Entrevista Basada en Tareas para colectar los datos, los cuales fueron analizados utilizando el análisis temático y el análisis ontosemiótico. Como resultado se obtuvo que, de acuerdo con el establecimiento de la conexión de reversibilidad (conexión matemática central), se puede valorar el nivel de comprensión de los estudiantes respecto a las funciones objeto de estudio.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Estudio de casos | Exponenciales | Logarítmicas | Otro (marcos) | Tareas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Australian Curriculum Assessment and Reporting Authority (ACARA) (2012). Australian Curriculum: Mathematics. Australia. Recuperado de http://www.australiancurriculum.edu.au/Mathematics/Rationale Baki, A., Çatlıoğlu, H., Coştu, S. y Birgin, O. (2009). Conceptions of high school students about mathematics connections to the real-life. Procedia Social and Behavioral Sciences, I, 1401-1407. https://doi.org/10.1016/j.sbspro.2009.01.247 Barmby, P., Harries, T., Higgins, S. y Suggate, J. (2009). The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 70(3), 217–241. https://doi.org/10.1007/s10649-008-9145-1 Bingölbali, E. y Coşkun, M. (2016). A Proposed Conceptual Framework for Enhancing the use of Making Connections Skill in Mathematics Teaching. Education and Science, 41(183), 233-249. Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. (Tesis doctoral no publicada). Simon Fraser University. Canadá. Campo-Meneses, K. y García-García, J. (2020. Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos. Educación Matemática 32(3), 209–40. http://doi.org/10.24844/EM3203.08 Castro, M., González, M., Flores, S., Ramírez, O., Cruz, M. y Fuentes, M. (2017). Registros de representación semiótica del concepto de función exponencial. Parte I. Entreciencias: Diálogos en la Sociedad del Conocimiento, 5(13), 1-12. DOI: http://dx.doi.org/10.21933/J.EDSC.2017.13.218 Clarke, V. y Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and developing strategies for effective learning. The Psychologist, 26(2), 120–123. Dolores-Flores, C., Rivera-López, M. I. y García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. http://doi.org/10.1080/0020739X.2018.1507050 Eli, J. A., Mohr-Schroeder, M. J. y Lee, C. W. (2013). Mathematical connection and their relationship to mathematics knowledge for teaching geometry. School Science and Mathematics, 113(3), 120-134. https://doi.org/10.1111/ssm.12009 Elia, I., Panaoura, A., Eracleous, A. y Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education, 5, 533–556. https://doi.org/10.1007/s10763-006-9054-7 Ellis, A., Ozgur, Z., Kulow, T., Dogan, M. y Amidon, J. (2016). An exponential growth learning trajectory: Students’ emerging understanding of exponential growth through covariation. Mathematical Thinking and Learning, 18(3), 151–181. http://dx.doi.org/10.1080/10986065.2016.1183090 Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula. (Unpublished dissertation). Pennsylvania State University College of Education, EE. UU. Ferrari-Escolá, M., Martínez-Sierra, G. y Méndez-Guevara, M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. Journal of Mathematical Behavior, 42(2016), 92–108. https://doi.org/10.1016/j.jmathb.2016.03.003 Font, V. (2007). Una perspectiva ontosemiótica sobre cuatro instrumentos de conocimiento que comparten un aire de familia: particular-general, representación, metáfora y contexto. Educación Matemática, 19(2), 95-128. Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal Mathematics Teacher Education, 11(2008), 199–219. http://doi.org/10.1007/s10857-007-9070-8 García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario. [Tesis de doctorado no publicada. Universidad Autónoma de Guerrero, México]. https://www.researchgate.net/profile/Javier_Garcia-Garcia4 García-García, J. y Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. http://doi.org/10.1080/0020739X.2017.1355994 García-García, J. y Dolores-Flores, C. (2020). Exploring pre-university students´ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 1-25. https://doi.org/10.1080/0020739X.2020.1729429 García-García, J. y Dolores-Flores, C. (2021). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33(1), 1–22. https://doi.org/10.1007/s13394-019-00286-x Godino, J. D. Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39 (1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1 Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. En A. E. Kelly y R. A. Lesh (Eds.), Handbook of Research Design in Mathematics and Science Education (pp. 517–545). Mahwah, NJ: Lawrence Erlbaum Associates. Gruver, J. (2018). A trajectory for developing conceptual understanding of logarithmic relationships. Journal of Mathematical Behavior, 50, 1–22. https://doi.org/10.1016/j.jmathb.2017.12.003 Hiebert, J., y Carpenter, T. P. (1992). Learning and teaching with understanding. En Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 65–97). Macmillan Publishing Co, Inc. Jaijan, W. y Loipha, S. (2012). Making Mathematical Connections with Transformations Using Open Approach. HRD Journal, 3(1), 91–100. Ji-Eun L. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal Mathematics Teacher Education, 15(2012), 429–452. https://doi.org/10.1007/s10857-012-9220-5 Kuper, E. y Carlson, M. (2020). Foundational ways of thinking for understanding the idea of logarithm. Journal of Mathematical Behavior, 57 100740, 1-18. http://doi.org/10.1016/j.jmathb.2019.100740 MEN. (1998). Lineamientos Curriculares de Matemáticas. Bogotá Colombia: Ministerio de Educación Nacional. Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive Level: A Tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/10288457.2012.10740738 Ministry of National Education. (2013). Secondary level mathematics curriculum: Grades 9–12. Ankara: Directorate of State Books. Moon, K., Brenner, M. E., Jacob, B. y Okamoto, Y. (2013). Prospective secondary mathematics teachers ‘understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, 15(3), 201–227. https://doi.org/10.1080/10986065.2013.794322 NCTM. (2013). Connecting the NCTM process standards and the CCSSM practices. Reston: National Council of Teachers of Mathematics. Ortiz, J. y Font, V. (2011). Significados personales de los futuros profesores de educación primaria sobre la media aritmética. Educación Matemática, 23(2), 91-109. Pino-Fan, L. R., Godino, J. D y Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative”. Journal of Mathematics Teacher Education 21(1), 63–94. https://doi.org/10.1007/s10857-016-9349-8 Rodríguez-Nieto, C., Font, V., Borgi, V. y Rodríguez-Vásquez, F. (2021). Mathematical connections from a networking theory between extended theory of Mathematical Connections and Onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 1-27. https://doi.org/10.1080/0020739X.2021.1875071 Sureda, P., y Otero, M. (2013). Estudio sobre el proceso de conceptualización de la función exponencial. Educación Matemática, 25(2), 89-118. Trejo, M. y Ferrari, M. (2018). Desarrollo del Razonamiento Covariacional en Estudiantes de Nivel Medio Superior. El caso de la función exponencial. Innovación e Investigación en Matemática Educativa, 3(1), 35-58. Weber, K. (2002). Students’ Understanding of Exponential and Logarithmic Functions. En D. Quinney (Ed.), Proceedings of the 2nd international Conference on the Teaching of Mathematics (pp. 1-7). John Wiley y Sons.