Meanings given to algebraic symbolism in problem posing
Tipo de documento
Autores
Lista de autores
Cañadas, María C., Molina, Marta y Del-Rio, Aurora
Resumen
Some errors in the learning of algebra suggest students have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing in order to analyze the students’ capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process depending on the characteristics of the algebraic statements given. We designed a written questionnaire composed of eight closed algebraic statements expressed symbolically, which was administered to 55 students who had finished their compulsory education and that had some previous experience in problem posing. In our analysis of the data, we examine both syntactic and semantic structures of the problem posed. We note that in most cases students posed problems with syntactic structures different to those given. They did not include computations within variables, and changed the kinds of relationships connecting variables. Students easily posed problems for statements with additive structures. Other differences in the type of problems posed depend on the characteristics of the given statements.
Fecha
2018
Tipo de fecha
Estado publicación
Términos clave
Álgebra | Cognición | Planteamiento de problemas | Representaciones
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Arcavi, A. (1994). Symbol sense: Informal sense–making in formal mathematics. For the Learning of Mathematics, 1(3), 24-35. Arcavi, A. (2006). El desarrollo y el uso del sentido de los símbolos [The development and use of the sense of symbols]. In I. Vale, T. Pimentel, A. Barbosa, L. Fonseca, L. Santos, & P. Canavarro (Eds.), Números e álgebra na aprendizagem da Matemática e na formaçâo de profesores (pp. 29-47). Caminha, Portugal: Sociedade Portugesa de Ciências de Eduacaçâo. Bonotto, C., & Dal Santo, L. (2015). On the relationship between problem posing, Problem solving, and creativity in the primary school. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds), Mathematical problem posing. From research to effective practice (pp. 103-123). New York, NY: Springer. Booth, L. R. (1982). Ordering your operations. Mathematics in School, 11(3), 5-6. Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011a). Assessing the difficulty of mathematical translations: Synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6(3), 113-133. Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011b). Translations among mathematical representations: Teacher beliefs and practices. International Journal of Mathematics Teaching and Learning, June. Retrieved from http://www.cimt.plymouth.ac.uk/journal/bosse4.pdf Brown, S., & Walter, M. (2005). The art of problem posing. The 3rd addition. New York, NY: Routledge. Cai, J. (1998). An investigation of U.S. and Chinese students’ mathematical problem posing and problem solving. Mathematics Education Research Journal, 10, 37-50. Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. Journal of Mathematical Behavior, 21(4), 401-421. Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds), Mathematical problem posing. From research to effective practice (pp. 3-39). New York, NY: Springer. Cañadas, M. C., & Figueiras, L. (2011). Uso de representaciones y generalización de la regla del producto [Use of representations and generalization in the product principle]. Infancia y Aprendizaje, 34(4), 409-425. Castro, E. (2011). La invención de problemas y sus ámbitos de investigación [Problem posing and their research areas]. In J. L. Lupiáñez, M. C. Cañadas, M. Molina, M. Palarea, & A. Maz (Eds.), Investigaciones en Pensamiento Numérico y Algebraico e Historia de la Matemática y Educación Matemática – 2011 (pp. 1-16). Granada, Spain: Dpto. Didáctica de la Matemática, Universidad de Granada. Retrieved from http://funes.uniandes.edu.co/2015/ Castro, E. (2012). Dificultades en el aprendizaje del álgebra escolar [Difficulties in school algebra learning]. In A. Estepa, A. Contreras, J. Deulofeu, M. C. Penalva, F. J. García, & L. Ordóñez (Eds.), Investigación en Educación Matemática XVI (pp. 75-94). Baeza, Spain: SEIEM. Castro, E. (Ed.) (2001). Didáctica de la matemática en la Educación primaria [Mathematics Education on Elementary Education]. Madrid, Spain: Síntesis. Castro, E., Rico, L., & Gil, F. (1992). Enfoques de investigación en problemas verbales aritméticos aditivos [Approaches to research in additive verbal problems]. Enseñanza de las Ciencias, 10(3), 243-253. Cerdán, F. (2010). Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores [The incorrect equalities developed in the algebraic translation process: A catalog of errors]. PNA 4(3), 99-110. Dede, Y. (2005). Interpretation of the first-degree equations: A study on freshmen students in education faculty. Cumhuriyet University Social Sciences Journal, 29(2), 197-205. Fernández-Millán, E., & Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas [Investigating secondary students’ conceptual knowledge through problema posing]. Enseñanza de las Ciencias, 34(1), 53-71. Goldin, G. A. (1998). Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior, 17(2), 137-165. Goldin, G. A., & Mcclintock, C. E. (Eds.) (1980). Task variables in mathematical problem solving. Pensilvania, PA: The Franklin Institute Press. Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 276-295). New York, NY: Macmillan. Heller, J. I., & Greeno, J. G. (1979). Information processing analysis of mathematical problem solving. In R. W. Tyler & S. H. White (Eds.), Testing, teaching, and learning: Report of a conference on research on testing. Washington, National Institute of Education. Isik, C., & Kar, T. (2012). The analysis of the problems the pre-service teachers experience in posing problems about equations. Australian Journal of Teacher Education, 37(9), Article 6. Available at: http://ro.ecu.edu.au/ajte/vol37/iss9/6 Kaput, J. (1987). Representation and mathematics. En C. Janvier (Ed.), Problems of representation in the learning of mathematics (pp. 19-26). Hillsdale, NJ: Lawrence Earlbaum Associates. Kieran, C. (2006). Research on the learning and teaching of algebra. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 11-50). Rotterdam, The Netherlands: Sense. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning. Nueva York, NJ: NCTM. Kilpatrick, J. (1978). Variables and methodologies in research on problem solving. In L. L. Hatfield & D. A. Bradbard (Eds.), Mathematical problem solving: Papers from a research workshop (pp. 7-20). Columbus, OH: ERICISMEAC. Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in Mathematics Education, 20, 274-289. Koichu, B. & Kontorovich I. (2012). Dissecting success stories on mathematical problem posing: A case of the billiard task. Educational Studies in Mathematics, 83(1), 71-86. Leikin, R. (2015). Problem posing for and through investigations in a dynamic geometry environment. In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Problem posing: From research to effective practice (pp. 373-391). Dordrecht, The Netherlands: Springer. MacGregor, M. & Stacey, K. (1993). Cognitive models underlying students' formulation of simple linear equations. Journal for Research in Mathematics Education, 24(3), 217-232. Marshall, S. P. (1995). Schemas in problem solving. New York, NY: Cambridge University Press. Ministerio de Educación y Ciencia (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato [Royal Decree that establishes the basic curriculum of secondary education]. BOE, 3, 169-546. Molina, M. (2009). Una propuesta de cambio curricular: integración del pensamiento algebraico en educación primaria [A proposal of curricular change: Integration of algebraic thinking in elementary education]. PNA, 3(3), 135-156. Molina, M., Rodríguez-Domingo, S., Cañadas, M. C., & Castro, E. (2017). Secondary school students’ errors in the translation of algebraic statements. International Journal of Science and Mathematics Education, 15(6), 1137-1156. https://doi.org/10.1007/s10763-016-9739-5 National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author. Ngah, N., Ismail, Z., Tasir, Z., Said, M., & Haruzuan, M. N. (2016). Students’ ability in free, semi-structured and structured problem posing situations. Advanced Science Letters, 22(12), 4205-4208. OECD (2016). PISA 2015 Assessment and analytical framework: Science, reading, mathematic and financial literacy, PISA, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264255425-en Orrantia, J., González, L. B., & Vicente, S. (2005). Un análisis de los problemas aritméticos en los libros de texto de Educación Primaria [An analysis of the arithmetic problems in textbooks of Elementary Education]. Infancia y Aprendizaje, 28, 420-451. Ponte, J. P., & Henriques, A. (2013). Problem posing based on investigation activities by university students. Educational Studies in Mathematics, 83(1), 145-156 Puig, L. (1996). Elementos de resolución de problemas [Elements on problem solving]. Granada, Spain: Comares. Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1102-1118). Oxford, United Kingdom: Oxford University Press. Resnick, L. B., Cauzinille-Marmèche, E., Mathieu, J. (1987). Understanding algebra. In J. A. Sloboda & D. Rogers (Eds), Cognitive processes in mathematics (pp. 169-203). Oxford, United Kingdom: Clarendon Press. Rodríguez-Domingo, S., & Molina, M. (2013). De lo verbal a lo simbólico: un paso clave en el uso del álgebra como herramienta para la resolución de problemas y la modelización matemática [From verbal to symbolic: A key step in the use of algebra as a tool for problem solving and mathematical modeling]. In L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina, & I. Segovia (Eds.), Investigación en Didáctica de la Matemática. Homenaje a Encarnación Castro (pp. 111-118). Granada, Spain: Comares. Rodríguez-Domingo, S., Molina, M., Cañadas, M. C., & Castro, E. (2015). Errores en la traducción de enunciados algebraicos entre los sistemas de representación simbólico y verbal [Errors in the translation of algebraic statements between symbolic and verbal representation systems]. PNA, 9(4), 273-293. Ruano, R. M., Socas, M., & Palarea, M. M. (2008). Análisis y clasificación de errores cometidos por alumnos de secundaria en los procesos de sustitución formal, generalización y modelización en álgebra [Secondary students’ error analysis and classification in formal substitution, generalization and modelling process in algebra]. PNA, 2(2), 61-74. Schmidt, S., & Weiser, W. (1995). Semantic structures of one-step word problems involving multiplication or division. Educational Studies in Mathematics, 28(1), 55-7. Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics 14, 19-28. Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27, 521-539. Silver, E. A., Mamona-Downs, J., Leung, S., & Kenney, P. A. (1996). Posing mathematical problems: An exploratory study. Journal for Research in Mathematics Education, 27(3), 293-309. Singer, F. M., Ellerton, N., & Cai, J. (2013). Problem-posing research in mathematics education: new questions and directions. Educational Studies in Mathematics, 83(1), 1-7. Star, J. (2005). Re-«conceptualizing» procedural knowledge in mathematics. Journal for Research in Mathematics Education, 36(5), 404-411. Stephens, A. (2003). Another look at words problems, The Mathematics Teacher, 96(1), 63-66. Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem posing. In P. Clarkson (Ed.), Technology in mathematics education (pp. 518-525). Melbourne, Australia: Mathematics Education Research Group of Australasia. Van Harpen, X. Y. & Presmeg, N. C. (2013). An investigation of relationships between students’ mathematical problem-posing abilities and their mathematical content knowledge. Educational Studies in Mathematics, 83, 117-132. Wheeler, D. (1989). Contexts for research on the teaching and learning of algebra. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra (pp. 278-287). Reston, VA: Lawrence Erlbaum Associates.
Dirección de correo electrónico de contacto
mconsu@ugr.es