Prospective teachers’ difficulties in integrating technology into problem solving and teaching on rational numbers
Tipo de documento
Autores
Lista de autores
González, Antonio y Arnal-Bailera, Alberto
Resumen
Background: the use of technology in mathematics teaching is fundamental because it enables students to activate basic mathematical processes. This makes it necessary to carry out studies to identify the prospective teachers’ knowledge, so technology can be integrated into their teaching. Models such as TPACK have been developed precisely to analyse the results of this type of study. Objectives: describe the prospective teachers’ challenges to integrating technology into their explanations. Design: the study carried out is exploratory, with a descriptive purpose. Settings and participants: the research was carried out with a sample of 47 pairs of prospective teachers from the university of Zaragoza. Data collection and analysis: we used a data collection tool consisting of a task that involves solving a problem of products of fractions and designing the corresponding explanation for some hypothetical students of the early years, with and without technology. These data are analysed under the TPACK framework. Results: we identified and analysed the difficulties that our prospective teachers present in the face of some relationships between technology and content, and others of a pedagogical-mathematical nature, to relate different interpretations of the rational number adequately, and their tendency not to include technological tools to design their explanations. Conclusions: our analysis allows us to propose actions to improve our teachers’ education to include technology in their classes.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Computadores | Estrategias de solución | Inicial | Números racionales | Software
Enfoque
Nivel educativo
Educación secundaria básica (12 a 16 años) | Educación superior, formación de pregrado, formación de grado
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
2
Rango páginas (artículo)
162-192
ISSN
21787727
Referencias
Alguacil, M., Boqué, M. C., & Pañellas, M. (2016). Dificultades en conceptos matemáticos básicos de los estudiantes para maestro. International Journal of Developmental and Educational Psychology INFAD, 1, 419-429. http://dx.doi.org/10.17060/ijodaep.2016.n1.v1.162 Arnal-Bailera, A., & Oller-Marcén, A. M. (2017). Formación del Profesorado y Demostración Matemática. Estudio Exploratorio e Implicaciones. Bolema: Boletim de Educação Matemática, 31(57), 135-157. https://doi.org/10.1590/1980-4415v31n57a07 Bate, F. (2010). A bridge too far? Explaining beginning teachers' use of ICT in Australian schools. Australasian Journal of Educational Technology, 26(7), 1042-1061. https://doi.org/10.14742/ajet.1033 Bate, F. G., Day, L., & Macnish, J. (2013). Conceptualising Changes to PreService Teachers’ Knowledge of how to Best Facilitate Learning in Mathematics: A TPACK Inspired Initiative. Australian Journal of Teacher Education, 38(5), 14-30. http://ro.ecu.edu.au/ajte/vol38/iss5/2 Behr, M. J., Harel, G., Post, T., & Lesh, R. (1993). Rational numbers: Toward a semantic analysis-emphasis on the operator construct. In T.P. Carpenter, E. Fennema y T. A. Romberg (Eds.), Rational Numbers: An Integration of Research (pp. 13-47). Lawrence Erlbaum. Beltrán-Sánchez, J. A., García, R. I., Ramírez-Montoya, M. S., & Tánori, J. (2019). Factores que influyen en la integración del Programa de Inclusión y Alfabetización Digital en la docencia en escuelas primarias. Revista Electrónica de Investigación Educativa, 21(1), 1-11. https://doi.org/10.24320/redie.2019.21.e31.2088 Borasi, R. (1986). On the nature of problems. Educational studies in mathematics, 17(2), 125-141. https://doi.org/10.1007/BF00311517 Cabero, J. (2014). Formación del profesorado universitario en TIC. Aplicación del método Delphi para la selección de los contenidos formativos. Educación XX1, 17(1), 111-132. http://hdl.handle.net/11441/16394 Castellanos, A., Sánchez, C., & Calderero, J. F. (2017). Nuevos modelos tecnopedagógicos. Competencia digital de los alumnos universitarios. Revista electrónica de investigación educativa, 19(1), 1-9. http://dx.doi.org/10.24320/redie.2017.19.1.1148 Charalambous, C. Y., Hill, H. C., & Ball, D. L. (2011). Prospective teachers’ learning to provide instructional explanations: how does it look and what might it take? Journal of Mathematics Teacher Education, 14(6), 441-463. https://doi.org/10.1007/s10857-011-9182-z Clarke, M. D., Roche, A. & Mitchell, A. (2008). Ten practical tips for making fractions come alive and make sense. Mathematics Teaching in the Middle School, 13(7), 372-380. https://www.nctm.org/Publications/Mathematics-Teaching-in-Middle-School/2008/Vol13/Issue7/Ten-Practical-Tips-for-Making-FractionsCome-Alive-and-Make-Sense/ Cózar, R., Zagalaz, J., & Sáez, J. (2015). Creando contenidos curriculares digitales de ciencias sociales para educación primaria. Una experiencia TPACK para futuros docentes. Educatio Siglo XXI, 33(3), 147-168. https://doi.org/10.6018/j/240921 Dockendorff, M. & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66-84. https://doi.org/10.1080/0020739X.2017.1341060 Durdu, L. & Dag, F. (2017). Pre-Service Teachers’ TPACK Development and Conceptions through a TPACK-Based Course. Australian Journal of Teacher Education, 42(11), 150-171. http://dx.doi.org/10.14221/ajte.2017v42n11.10 Edmonds, W. A. & Kennedy, T. D. (2017). An applied reference guide to research designs: Qualitative, quantitative and mixed methods. Sage. Erdogan, A. & Sahin, I. (2010). Relationship between math teacher candidates’ technological pedagogical and content knowledge (TPACK) and achievement levels. Procedia-Social and Behavioral Sciences, 2(2), 2707-2711. https://doi.org/10.1016/j.sbspro.2010.03.400 Ertmer, P. A. (1999). Addressing first- and second-order barriers to change: Strategies for technology integration. Educational Technology Research and Development, 47(4), 47-61. https://doi.org/10.1007/BF02299597 Escolano, R. & Gairín, J. M. (2005). Modelos de medida para la enseñanza del número racional en educación primaria. Unión, 1, 17-35. http://www.fisem.org/www/union/revistas/2005/1/Union_001_006.pd f Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Reidel. Gairín, J. M. (2001). Sistemas de representación de números racionales positivos: un estudio con maestros en formación. Contextos Educativos, 4, 137-159. http://dx.doi.org/10.18172/con.490 Gairín, J. M. & Muñoz, J. M. (2005). El número racional positivo en la práctica educativa: Estudio de una propuesta editorial. In IX Simposio SEIEM. http://www.seiem.es/docs/comunicaciones/GruposIX/pna/gairinmuno z.pdf Kaplon-Schilis, A. & Lyublinskaya, I. (2019). Analysis of relationship between five domains of TPACK framework: TK, PK, CK Math, CK Science, and TPACK of pre-service special education teachers. Technology, Knowledge and Learning, 25, 25-43. https://doi.org/10.1007/s10758019-09404-x Kieren, T. (1980). The rational number construct — its elements and mechanisms. En T. E. Kieren (Ed.), Recent research on number learning (pp. 125-149). ERIC/SMEAC. https://eric.ed.gov/?id=ED212463 Kushner, S. N. & Ward, C. L. (2013). Teaching with technology: Using TPACK to understand teaching expertise in online higher education. Journal of Educational Computing Research, 48(2), 153-172. https://doi.org/10.2190/EC.48.2.c Ljajko, E. (2016). Does the problem complexity impact students' achievements in a computer aided mathematics instruction? Teaching of Mathematics, 19(1), 41-55. http://www.teaching.math.rs/cap/browse.php?p=TM191 Martínez-Juste, S., Muñoz-Escolano, J. M., Oller-Marcén, A. M., & Ortega, T. (2017). Análisis de problemas de proporcionalidad compuesta en libros de texto de 2º de ESO. Revista latinoamericana de investigación en matemática educativa, 20(1), 95-122. http://dx.doi.org/10.12802/relime.17.2014 Mishra, P. & Koehler, M. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers college record, 108(6), 1017-1054. https://www.tcrecord.org/content.asp?contentid=12516 Morales-López, Y. (2019). Conocimientos que evidencian los futuros profesores cuando realizan una tarea que involucre geometría, enseñanza y uso de tecnologías. Acta Scientiae, 21(2), 75-92. https://doi.org/10.17648/acta.scientiae.v21iss2id5081 Mouza, C., Karchmer-Klein, R., Nandakumar, R., Ozden, S. Y. , & Hu, L. (2014). Investigating the impact of an integrated approach to the development of preservice teachers' technological pedagogical content knowledge (TPACK). Computers & Education, 71, 206-221. https://doi.org/10.1016/j.compedu.2013.09.020 Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper S. R., Johnston, C., Browning, C., Özgün-Koca, S. A., & Kersaint, G. (2009). Mathematics teacher TPACK standards and development model. Contemporary Issues in Technology and Teacher Education, 9(1), 4-24. https://www.citejournal.org/volume-9/issue-1- 09/mathematics/mathematics-teacher-tpack-standards-anddevelopment-model Olive, J. & Vomvoridi, E. (2006). Making sense of instruction on fractions when a student lacks necessary fractional schemes: The case of Tim. Journal of Mathematical Behavior, 25, 18-45. https://doi.org/10.1016/j.jmathb.2005.11.003 Özgün-Koca, S. A., Meagher, M., & Edwards, M. T. (2010). Preservice teachers’ emerging TPACK in a technology-rich methods class. The Mathematics Educator, 19(2), 10-20. http://tme.journals.libs.uga.edu/index.php/tme/article/view/210 Piñeiro, J. L., Castro-Rodríguez, E., & Castro, E. (2019). Concepciones de profesores de primaria sobre problemas matemáticos, su resolución y enseñanza. Avances de Investigación en Educación Matemática, 16, 57-72. https://doi.org/10.35763/aiem.v0i16.253 Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria. Boletín Oficial del Estado. Madrid, 1 de marzo de 2014, núm. 52, pp. 19349-19420. https://www.boe.es/buscar/act.php?id=BOE-A-2014-2222 Ruíz de Gauna, J., García, J., & Sarasua, J. (2013). Perspectiva de los alumnos de grado de educación primaria sobre las matemáticas y su enseñanza. Números. Revista de Didáctica de las Matemáticas, 82, 5-15. http://www.sinewton.org/numeros/numeros/82/Volumen_82.pdf Shield, M. & Dole, S. (2013). Assessing the potential of mathematics textbooks to promote deep learning. Educational Studies in Mathematics, 82(2), 183-199. https://doi.org/10.1007/s10649-012-9415-9 Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004 Simon, M. A., Placa, N., Avitzur, A. & Kara, M. (2018). Promoting a concept of fraction-as-Measure: a study of learning through activity. Journal of Mathematical Behavior, 52, 122-133. https://doi.org/10.1016/j.jmathb.2018.03.004 Tsai, C. C. & Chai C. S. (2012). The “third”-order barrier for technologyintegration instruction: Implications for teacher education. Australasian Journal of Educational Technology, 28(6), 1057-1060. https://doi.org/10.14742/ajet.810