¿Qué aporta el realismo crítico a la investigación en matemática educativa?
Tipo de documento
Autores
Lista de autores
Nunez, Iskra
Resumen
Este artículo analiza la posición filosófica del realismo crítico y su utilidad potencial en la investigación en educación matemática (IEM). Se divide en tres partes. La primera parte ofrece el marco teórico. Se presenta el realismo crítico en relación con la pluralidad de teorías en IEM. La segunda parte ofrece un análisis de cuatro categorías de teorías usadas en IEM: la psicología cultural, las etnomatemáticas, la perspectiva practico-interpretativa, y aspectos de semiótica y discurso. Se utiliza el método realista crítico denominado crítica del talón de Aquiles para señalar puntos de vulnerabilidad aunque fundamentales en cada categoría. Se argumenta que la identificación del talón de Aquiles puede revelar las ventajas de la no parcialidad. La tercera parte presenta la síntesis de los resultados. Se identifican los teóricos quienes previamente identificaron algunos posibles talones de Aquiles y se señalan once de estos para así evitar posiciones parciales en IEM.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Etnomatemática | Fundamentos de Educación Matemática | Teorías de aprendizaje
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Editores (capítulo)
Lista de editores (capitulo)
Morales, Yuri y Ramírez, Alexa
Título del libro
Memorias I CEMACYC
Editorial (capítulo)
Lugar (capítulo)
Rango páginas (capítulo)
1-15
ISBN (capítulo)
Referencias
Archer, M. S. (2000). Being human: The problem of agency. Cambridge: Cambridge University Press. Bhaskar, R. (2008a). A realist theory of science. London: Taylor & Francis. (Original publicado 1975). Bhaskar, R. (2008b). Dialectic: The pulse of freedom. London: Taylor & Francis. (Original publicado 1993). Bhaskar, R. (2009). Scientific realism and human emancipation. London: Taylor & Francis. (Original publicado 1986). Bikner-Ahsbahs, A., & Prediger, S. (2006). Diversity of theories in mathematics education-How can we deal with it? ZDM, 38(1), 52–57. Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories-An approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. D. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 483–506). New York: Springer. Blunden, A. (2009). An interdisciplinary concept of activity. Critical Practice Studies, 11(1), 1- 26. Brown, T. (1991). Hermeneutics and mathematical activity. Educational Studies in Mathematics, 22(5), 475–480. Brown, T. (2010). Truth and the renewal of knowledge: The case of mathematics education. Educational Studies in Mathematics, 75(3), 329–343. Bussi Bartolini, M., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artefacts and signs after a Vygotskian perspective. In L. D. English (Ed.), Second handbook of research on mathematics teaching and learning (pp. 746–783). London: Routledge. Cobb, P. (2007). Putting philosophy to work. In F. K. Lester (Ed.), Second handbook of research in mathematics teaching and learning (pp. 3–38). Charlotte, NC: IAP. Collier, A. (1994). Critical realism: An introduction to Roy Bhaskar’s philosophy. London: Verso. Cottingham, J. (1983). Ethics and impartiality. Philosophical Studies, 43(1), 83–99. Cottingham, J. (1986). Partiality, favouritism and morality. The Philosophical Quarterly, 36(144), 357–373. D’Ambrosio, U. (1985). Ethnomathematics and its place in the history and pedagogy of mathematics. For the learning of Mathematics, 5(1), 44–48. D’Ambrosio, U. (2007). Peace, social justice and ethnomathematics. In B. Sriraman (Ed.), International perspectives on social justice in mathematics education (pp. 37–51). Charlotte, NC: IAP. D’Ambrosio, U., & D’Ambrosio, B. S. (2013). The role of ethnomathematics in curricular leadership in mathematics education. Journal of Mathematics Education at Teachers College, 4(1), 19–25. Dowling, P. (1998). The sociology of mathematics education: Mathematical myths / pedagogic texts. London: Routledge. Dowling, P. (2001). Reading mathematics texts. In P. Gates (Ed.), Issues in mathematics teaching (pp. 180–196). Abingdon: RoutledgeFalmer. Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit Oy. Engeström, Y., & Sannino, A. (2012). Whatever happened to process theories of learning? Learning, Culture and Social Interaction, 1(1), 45–56. Ernest, P. (1991). The philosophy of mathematics education. London: Falmer Press. Ernest, P. (1998). Social constructivism as a philosophy of mathematics. Albany, NY: SUNY Press. Ernest, P. (2004). Postmodernity and social research in mathematics education. In P. Valero & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (pp. 65–84). Boston, MA: Kluwer. Ernest, P. (2010a). Reflections on theories of learning. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 39–47). New York: Springer. Ernest, P. (2010b). The scope and limits of critical mathematics education. In H. Alrø, O. Ravn, & P. Valero (Eds.), Critical mathematics education: Past, present and future: Festschrift for Ole Skovsmose (pp. 65–88). Rotterdam: Sense Publishers. Gutiérrez, R. (2013). The sociopolitical turn in mathematics education. Journal for Research in Mathematics Education, 44(1), 37–68. Jablonka, E., Wagner, D., & Walshaw, M. (2013). Theories for studying social, political and cultural dimensions of mathematics education. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third International Handbook of Mathematics Education (pp. 41–67). Springer: New York Jankvist, U. T. (2011). Theories of mathematics education, edited by Bharath Sriraman and Lyn English: Common ground for scholars and scholars in the making. Mathematical Thinking and Learning, 13(3), 247–257. Lawson, T. (2001). Two responses to the failings of modern economics: The instrumentalist and the realist. Review of Population and Social Policy, 10, 155–181. Leikin, R., & Zazkis, R. (2012). On the connections between general education theories and theories in mathematics education. Journal for Research in Mathematics Education, 43(2), 223–233. Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 19–46). Westport, CT: GPG. Lerman, S. (2006). Theories of mathematics education: Is plurality a problem? ZDM, 38(1), 8–13. Lester, F. K. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. ZDM, 37(6), 457–467. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575– 596). New York: Macmillan. Mearman, A. (2006). Critical realism in economics and open-systems ontology: A critique. Review of Social Economy, 64(1), 47–75. Nunez, I. (2009). Contradictions as sources of change: A literature review on activity theory and the utilisation of the activity system in mathematics education. Educate~, 9(3), 7–20. Nunez, I. (2012). Mind the gap! An exercise in concrete universality. International Journal of Žižek Studies, 6(3), 1–18. Nunez, I. (2013a). Transcending the dualisms of activity theory. Journal of Critical Realism, 12(2), 141–165. Nunez, I. (2013b). Critical realist activity theory: An engagement with critical realism and cultural-historical activity theory. London: Routledge. Piaget, J. (1970). Piaget’s theory. In P. H. Mussen (Ed.), Carmichael’s manual of child psychology (Vol. 1, pp. 703–732). New York: Wiley. Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM, 40(2), 317–327. Radford, L., Bardino, C., & Sabena, C. (2007). Perceiving the general: The multisemiotic dimension of students’ algebraic activity. Journal for Research in Mathematics Education, 38(5), 24–530. Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam: Sense Publishers. Sarra, C. (2011). Strong and smart-Towards a pedagogy for emancipation: Education for first peoples. London: Routledge. Sayer, R. A. (2000). Realism and Social Science. London: Sage Publications. Schoenfeld, A. H. (2000). Purposes and methods of research in mathematics education. Notices of the American Mathematical Society, 46(6), 641–649. Schoenfeld, A. H. (2002). Research methods in (mathematics) education. In L. D. English (Ed.), Handbook of research in mathematics teaching and learning (pp. 435–487). New York: Lawrence Erlbaum Associates. Scott, D. (2002). Realism and educational research: New perspectives and possibilities. London: Routledge. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press. Shipway, B. (2011). A critical realist perspective of education. London: Taylor & Francis. Silver, E. A., & Herbst, P. G. (2007). Theory in mathematics education scholarship. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 39– 65). Charlotte, NC: IAP. Simon, M. A. (2009). Amidst multiple theories of learning in mathematics education. Journal for Research in Mathematics Education, 40(5), 477–490. Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht: Kluwer. Skovsmose, O. (2002). Landscapes of investigation. In L. Haggarty (Ed.), Teaching mathematics in secondary schools: A reader (pp. 115–128). London: RoutledgeFalmer. Solomon, Y. (2007). Experiencing mathematics classes: Ability grouping, gender and the selective development of participative identities. International Journal of Educational Research, 46(1-2), 8–19. Sriraman, B., & English, L. D. (2005). Theories of mathematics education: A global survey of theoretical frameworks/trends in mathematics education research. ZDM, 37(6), 450–456. Sriraman, B., & English, L. D. (2010). Surveying theories and philosophies of mathematics education. In Theories of mathematics education: Seeking new frontiers (pp. 7–32). New York: Springer. Valero, P. (2004). Socio-political perspectives on mathematics education. In R. Zevenbergen & P. Valero (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (pp. 5–24). Boston, MA: Kluwer. Vithal, R., & Skovsmose, O. (1997). The end of innocence: A critique of ethnomathematics. Educational Studies in Mathematics, 34(2), 131–157. von Glasersfeld, E. (1989). Constructivism in education. In T. Husen & N. Postlethwaite (Eds.), International encyclopedia of education (pp. 162–163). New York: Pergamon Press. Vygotsky, L. S. (1962). Thought and language. (A. Kozulin, Ed.). Cambridge, MA: MIT Press. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. Zevenbergen, R. (1996). Constructivism as a liberal bourgeois discourse. Educational Studies in Mathematics, 31(1-2), 95–113. Zevenbergen, R. (2001). Language, social class and underachievement in school mathematics. In P. Gates (Ed.), Issues in mathematics teaching (pp. 38–50). Abingdon: RoutledgeFalmer.