Questioning definitions at university: the case of analysis
Tipo de documento
Autores
Lista de autores
Winsløw, Carl
Resumen
Based on a case study on task design related to the definition of curve integrals in vector analysis, we examine a modest design for realizing the paradigm of “questioning the world” in the study of a certain type of definition in mathematical analysis, and more generally, the conditions and constraints this paradigm meets in university mathematics education.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Enfoque
Idioma
Revisado por pares
Formato del archivo
Referencias
Ando, H., Haagerup, U., & Winsløw, C. (2016). Ultraproducts, QWEP von Neumann algebras, and the Effros–Maréchal topology. Journal fuer die Reine und Angewandte Mathematik, 715, 231-250. DOI: 10.1515/crelle-2014-0005 Barbé, J., Bosch, M., Espinoza, L., & Gascòn, J. (2005). Didactic Restrictions on the Teacher’s Practice: The Case of Limits of Functions in Spanish High Schools. Educational Studies in Mathematics, 59(1-3), 235-268. Bosch, M., & Winsløw, C. (2015). Linking problem solving and learning contents: the challenge of self-sustained study and research processes. Recherches en Didactique des Mathématiques, 35(2). Chevallard, Y. (1985). La Transposition didactique: du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage. Chevallard, Y. (1998). Questions vives, savoirs moribonds : le problème curriculaire aujourd’hui. Paper presented at the Défendre et transformer l’école pour tous, Marseille. http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=19 Chevallard, Y. (2002). Organiser l’étude 3. Écologie & régulation. Paper presented at the 11ème école de didactique des mathématiques. Chevallard, Y. (2004). Vers une didactique de la codisciplinarité. Notes sur une nouvelle épistémologie scolaire. Paper presented at the Journées de didactique comparée, Lyon. http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=45 Chevallard, Y. (2012). Teaching mathematics in tomorrow’s society: a case for an oncoming counterparadigm. Paper presented at the 12th International Congress on Mathematical Education, Seoul. retrieved from http://www.icme12.org/upload/submission/1985_F.pdf Eilers, S., Hansen, E., & Madsen, T. G. (2015). Indledende Matematisk Analyse. Copenhagen: University of Copenhagen. Grabiner, J. (1978). The origins of Cauchy’s theory of the derivative. . Historia Mathematica, 5, 379-409. Gravesen, K. (2015). Forskningslignende situationer på et førsteårskursus i matematisk analyse. (M.Sc.), University of Copenhagen, Copenhagen. Retsinformation. (2006). Retningslinier for universitetsuddannelser rettet mod undervisning i de gymnasiale udannelser (faglige mindstekrav). https://www.retsinformation.dk/Forms/R0710.aspx?id=29265. Winsløw C. (2012) A Comparative Perspective on Teacher Collaboration: The Cases of Lesson Study in Japan and of Multidisciplinary Teaching in Denmark. In G. Gueudet, B. Pepin, and L. Trouche (eds), From Text to 'Lived' Resources. Mathematics Teacher Education, vol 7. Dordrecht: Springer. Winsløw, C. (2015). Mathematical analysis in high school: a fundamental dilemma. In C. Bergsten and B. Sriraman (Ed.), Refractions of Mathematics Education: Festschrift for Eva Jablonka (pp. 197-213). Charlotte, NC: Information Age Publ. Winsløw, C., & Grønbæk, N. (2014). Klein’s double discontinuity revisited: contemporary challenges for universities preparing teachers to teach calculus. Recherches en Didactique des Mathématiques, 34(1), 59-86.