Reasoning on transition from manipulative strategies to general procedures in solving counting problems
Tipo de documento
Autores
Lista de autores
Figueiras, Lourdes y Cañadas, María C.
Resumen
We describe the procedures used by 11- to 12-year-old students for solving basic counting problems in order to analyse the transition from manipulative strategies involving direct counting to the use of the multiplication principle as a general procedure in combinatorial problems. In this transition, the students sometimes spontaneously use tree diagrams and sometimes use numerical thinking strategies. We relate the findings of our research to recent research on the representational formats on the learning of combinatorics, and reflect on the didactic implications of these investigations.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Combinatoria | Estrategias de solución | Generalización | Inductivo | Otro (procesos cognitivos) | Procesos de justificación
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
30(1)
Rango páginas (artículo)
89-96
ISSN
14636840
Referencias
Castro, E. and E. Castro. 1997. Representaciones y modelización. In La educación matemática en la enseñanza secundaria, ed. L. Rico, 95-124. Barcelona: Horsori. Empson, S. B. and E. Turner. 2006. The emergence of multiplicative thinking in children’s solutions to paper folding tasks. Journal of Mathematical Behavior 25: 46-56. English, L. D. 1991. Young children’s combinatoric strategies. Educational Studies in Mathematics, 22(5): 451-474. 1993. Children strategies for solving two- and three- dimensional combinatorial problems. Journal for Research in Mathematics Education, 24(3): 255-273. 2007. Children´s strategies for solving two- and three-dimensional combinatorial problems. In Stepping stones for the 21st century: Australasian mathematics education research, eds. G. C. Leder, and H. J. Forgasz, 139-156. The Netherlands: Sense Publishers. Fischbein, E. and A. Gazit. 1988. The combinatorial solving capacity in children and adolescents. Zentralblatt für Didaktik der Mathematik, 5: 193-197. Fischbein, E. and A. Grossman 1997. Schemata and intuitions in combinatorial reasoning. Educational Studies in Mathematics, 34: 27-47. Hernández, E. and M. Sánchez. 2008. ESTALMAT: un programa para estimular el talento matemático precoz. Unión, 16: 113-122. Hiebert, J. and T. Carpenter. 1992. Learning and teaching with understanding. In Handbook of research on mathematics teaching and learning, ed. D. Grows, 65-97. New York: MacMillan. Holyoak, K. J. and R.G. Morrison. 2005 . The Cambridge Handbook of Thinking and Reasoning. Cambridge: Cambridge University Press. Jones, G. A. 2005. Exploring probability in school: Challenges for teaching and learning. Dordrecht: Kluwer. Kolloffel, B. 2008. The effects of representational format on learning combinatorics from an interactive computer simulation. Instructional Science. Open access DOI 10.1007/s11251-008-9056-7 Rico, L. 2009. Sobre las Nociones de Representación y Comprensión en la Investigación en Educación Matemática. PNA, 4(1): 1-14 Steel, S. and E. Funnell, E. 2001. Learning multiplication facts: A study of children taught by discovery methods in England. Journal of Experimental Child Psychology 79: 37-55.