Relaciones entre pensamiento proporcional y pensamiento probabilístico en situaciones de toma de decisiones
Tipo de documento
Autores
Lista de autores
Vergara, Andrea, Estrella, Soledad y Vidal-Szabó, Pedro
Resumen
Tomar decisiones es un acto cotidiano en el ser humano, a mayor incertidumbre más difícil es decidir. A partir de una situación de aprendizaje, consistente en decidir entre dos juegos aleatorios con dados, se estudia la relación entre el pensamiento proporcional y el pensamiento probabilístico, considerando tres estados para el pensamiento proporcional y tres tipos de pensamiento probabilístico. Bajo el enfoque de un estudio de casos instrumental, se analizan las decisiones y argumentos de estudiantes de secundaria chilenos. Los resultados indican que existen relaciones tanto beneficiosas como perjudiciales entre el pensamiento proporcional y el probabilístico, y que las dificultades en la determinación de probabilidades no necesariamente obedecen a la ausencia del uso de proporciones. Se recomienda una enseñanza que considere la argumentación y el aprendizaje del espacio muestral para encauzar el uso de recursos intuitivos.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Estudio de casos | Pensamientos matemáticos | Probabilidad | Proporcionalidad
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
1
Rango páginas (artículo)
7-36
ISSN
20076819
Referencias
Alvarado, H., Estrella, S., Retamal, l., & Galindo, M. (2018). intuiciones probabilísticas en estudiantes de ingeniería: implicaciones para la enseñanza de la probabilidad. Revista Latinoamericana de Matemática Educativa, 21(2), 131-156. doi: https://doi.org/10.12802/relime.18.2121. Anway, d., & bennett, E. (2004, August). common misperceptions in probability among students in an Elementary Statistics class. En b. chance (conference chair), ARTIST Roundtable Conference on Assessment in Statistics held at Lawrence University (pp. 1-4). Recuperado desde http://www.rossmanchance.com/artist/proceedings/Anwaybennett.pdf Ashline, G., & Frantz, M. (2009). Proportional reasoning and probability. Synergy Learning Nov / Dec, 8-10. Recuperado desde https://web.archive.org/web/20071010023424/http:// cf.synergylearning.org/displaygrade.cfm?selectedgrade=1 batanero, c., chernoff, E., Engel, J., lee, H., & Sánchez, E. (2016). Research on teaching and learning Probability. En Research on Teaching and Learning Probability. icME-13 topical Surveys. cham: Springer. doi: https://doi.org/10.1007/978-3-319-31625-3_1 batanero, c., Henry, M., & Parzysz, b. (2005). the nature of chance and probability. En Graham A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 16-42). boston, MA: Springer. doi: https://doi.org/10.1007/0-387-24530-8_2 bellhouse, d. (2000). de Vetula: a medieval manuscript containing probability calculations. International Statistical Review, 68(2), 123-136. doi: https://doi.org/10.2307/1403664 bennett, d. (2014). Sticking to your guns: a flawed heuristic for probabilistic decision-making. En E.J. chernoff & b. Sriraman (Eds.), Probabilistic Thinking (pp. 261-281). dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-7155-0_14 borovcnik, M. (2011). Strengthening the role of probability within statistics curricula. En c. batanero, G. burrill & c. Reading (Eds.), Teaching Statistics in School Mathematics- Challenges for Teaching and Teacher Education. A joint ICMI/IASE study: the 18th ICMI study (Vol. 14) (pp. 71-83). dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-1131-0_11 bryant, P., & nunes, t. (2012). Children’s Understanding of Probability: A Literature Review (summary Report). london: nuffield Foundation. chernoff, E. J., & Zazkis, R. (2011). From personal to conventional probabilities: from sample set to sample space. Educational Studies in Mathematics, 77(1), 15-33. doi: https://doi.org/10.1007/ s10649-010-9288-8 chiesi, F., & Primi, c. (2010). cognitive and non-cognitive factors related to students’ statistics achievement. Statistics Education Research Journal, 9(1), 6 –26. Recuperado desde http://www.stat.auckland.ac.nz/~iase/serj/SERJ9%281%29_chiesi_Primi.pdf chiesi, F., & Primi, c. (2014). the interplay among knowledge, cognitive abilities and thinking styles in probabilistic reasoning: a test of a model. En E.J. chernoff & b. Sriraman, b. (Eds.), Probabilistic thinking (pp. 195-214). dordrecht : Springer. doi: https://doi.org/10.1007/978- 94-007-7155-0_11 d’Alembert, J. (1784). croix ou Pile. dans Encyclopédie, ou Dictionnaire Raisonne des Sciences, des Arts et des Metiers, Vol. 4, pp. 512-513. Paris: Societe des Gens de lettres. Recuperado desde https://gallica.bnf.fr/ark:/12148/bpt6k505351/f1.item.r=alembert díaz, c., & batanero, c. (2009). university student’s knowledge and biases in conditional probability reasoning. International Electronic Journal of Mathematics Education, 4(3), 131-162. Recuperado desde http://www.iejme.com/article/university-students-knowledge- and-biases-in-conditional-probability-reasoning Engel, J., & orthwein, A. (2018). the Six loses: Risky decisions between Probabilistic Reasoning and Gut Feeling. En c., batanero & E., chernoff (Eds.), teaching and learning Stochastics, Advances in Probability Education Research, ICME-13 Monograph (pp. 261-274). cham: Springer. doi: https://doi.org/10.1007/978-3-319-72871-1_15 Eriksson, K., & Simpson, b. (2010). Emotional reactions to losing explain gender differences in entering a risky lottery. Judgment and Decision Making, 5(3), 159. Recuperado desde http://journal.sjdm.org/10/10601/jdm10601.html Fielding-Wells, J. (2014). Where’s your evidence? challenging young students’ equiprobability bias through argumentation. En t. dunne (conference chair), The 9th International Conference on Teaching Statistics (pp. 1-6). Recuperado desde https://iase-web.org/icots/9/proceedings/ pdfs/icotS9_2b2_FiEldinGWEllS.pdf Fischbein, E., & Gazit, A. (1984). does the teaching of probability improve probabilistic intuitions? Educational Studies in Mathematics, 15(1), 1-24. doi: https://doi.org/10.1007/bf00380436 Fischbein, E. (1975). The intuitive sources of probabilistic thinking in children. dordrecht: Reidel Publishing. doi: https://doi.org/10.1007/978-94-010-1858-6 Gal, i. (2005). towards “probability literacy” for all citizens: building blocks and instructional dilemmas. En Graham A. Jones (Ed.), Exploring probability in school: challenges for teaching and learning (pp. 39-63). boston, MA: Springer. doi: https://doi.org/10.1007/0-387-24530-8_3 Gandhi, H. (2018). understanding children’s Meanings of Randomness in Relation to Random Generators. En c., batanero & E., chernoff (Eds.), Teaching and Learning Stochastics, Advances in Probability Education Research, ICME-13 Monograph (pp. 181-200). cham: Springer. doi: https://doi.org/10.1007/978-3-319-72871-1_11 Garfield, J., & Ahlgren, A. (1988). difficulties in learning basic concepts in probability and statistics: implications for research. Journal for Research in Mathematics Education, 19(1), 44–63. doi: https://doi.org/10.2307/749110 Garfield, J., & ben‐Zvi, d. (2007). How students learn statistics revisited: A current review of research on teaching and learning statistics. International Statistical Review, 75(3), 372-396. doi: https://doi.org/10.1111/j.1751-5823.2007.00029.x Gauvrit, n., & Morsanyi, K. (2014). the equiprobability bias from a mathematical and psychological perspective. Advances in cognitive psychology, 10(4), 119-130. Recuperado desde https://www.ncbi.nlm.nih.gov/pmc/articles/PMc4310748/ Gigerenzer, G. (2011). Decisiones Instintivas: la inteligencia del inconsciente. barcelona: Editorial Ariel. Hoffrage, u., Krauss, S., Martignon, l., & Gigerenzer, G. (2015). natural frequencies improve bayesian reasoning in simple and complex inference tasks. Frontiers in psychology, 6, 1473. doi: https://doi.org/10.3389/fpsyg.2015.01473 Jones, G., langrall, c., thornton, c., & Mogill, A. (1999). Students’ probabilistic thinking in instruction. Journal for Research in Mathematics Education, 30(5), 487–519. doi: https:// doi.org/10.2307/749771 Kahneman, d. (2012). Pensar rápido, pensar despacio. barcelona: Penguin Random House. Kahneman, d., & tversky, A. (1982). the psychology of preferences. Scientific American, 246(1), 160-173. doi: http://dx.doi.org/10.1038/scientificamerican0182-160 Kruger, J., Wirtz, d., & Miller, d. (2005). counterfactual thinking and the first instinct fallacy. Journal of personality and social psychology, 88(5), 725-735. doi: https://doi.org/10.1037/ e413812005-243 laplace, P. (1814). Essai philosophique sur les probabilités. Paris: Mme Ve courcier. Recuperado desde de https://www.e-rara.ch/zut/doi/10.3931/e-rara-3684. lecoutre, M., durand, J., & cordier, J. (1990). A study of two biases in probabilistic judgments: Representativeness and equiprobability. En J. P. caverni, J. M. Fabre & M. González (Eds.), Advances in Psychology: Cognitive Biases (pp. 563-575). Amsterdam: Elsevier. doi: https://doi.org/10.1016/s0166-4115(08)61343-6 Martignon, l. (2014). Fostering children’s probabilistic reasoning and first elements of risk evaluation. En E. J. chernoff & b. Sriraman (Eds.), Probabilistic Thinking (pp. 149-160). dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-7155-0_9 Ministerio de Educación de chile (2014). comprender la categoría de desempeño. En Autor (Ed.), Guía para comprender la categoría de desempeño y orientar las rutas de mejora (pp. 13-26). Recuperado de http://archivos.agenciaeducacion.cl/guia_para_comprender_categoria_de_ desempeno.pdf Ministerio de Educación de chile (2015). Matemática. En Autor (Ed.), Bases Curriculares 7° básico a 2° medio (pp. 93-106). Recuperado de http://www.curriculumnacional.cl/614/ articles-37136_bases.pdf Morsanyi, K., Primi, c., chiesi, F., & Handley, S. (2009). the effects and side-effects of statistics education: Psychology students’(mis-) conceptions of probability. Contemporary Educational Psychology, 34(3), 210-220. doi: https://doi.org/10.1016/j.cedpsych.2009.05.001 nikiforidou, Z. (2019). Probabilities and Preschoolers: do tangible Versus Virtual Manipulatives, Sample Space, and Repetition Matter?. Early Childhood Education Journal, 47(6), 769-777. doi: https://doi.org/10.1007/s10643-019-00964-2 oEcd (2016). PISA 2015 Results (Volume I): Excellence and Equity in Education. Paris: oEcd Publishing. doi: https://doi.org/10.1787/9789264266490-en Pratt, d., & Kazak, S. (2018). Research on uncertainty. En ben-Zvi, d., Makar, K., & Garfield, J. (Eds.), International Handbook of Research in Statistics Education (pp. 193-227), cham: Springer. doi: https://doi.org/10.1007/978-3-319-66195-7_6 Reyes- Gasperini, d., & cantoral, R. (2016). Empoderamiento docente: la práctica docente más allá de la didáctica… ¿qué papel juega el saber en una transformación educativa? Revista de la Escuela de Ciencias de la Educación, 2(11), 155-176. Recuperado de http://www. revistacseducacion.unr.edu.ar/ojs/index.php/educacion/article/viewFile/265/248 Reyes- Gasperini, d. (2016). Empoderamiento docente y Socioepistemología. Un estudio sobre la transformación educativa en Matemáticas. México: Gedisa. Sedlmeier, P. (1999). Improving statistical reasoning: Theoretical models and practical implications. new york: Psychology Press. doi: https://doi.org/10.4324/9781410601247 Stake, R. (2007). Investigación con estudio de casos. Madrid: Morata. Van dooren, W. (2014). Probabilistic thinking: analyses from a psychological perspective. En E. J. chernoff & b. Sriraman (Eds.), Probabilistic Thinking (pp. 123-126). Springer, dordrecht. doi: https://doi.org/10.1007/978-94-007-7155-0_7 Vergnaud, G. (1983). Multiplicative structures. En R. lesh & M. landau (Eds.), Acquisition of mathematics concepts and processes (pp. 127-174). orlando, Fl: Academic Press. Vergnaud, G. (1997). the nature of mathematical concepts. En t. nunes & P. bryant (Eds.), Learning and teaching mathematics: An international perspective (pp. 5-28). Hove, England: Psychology Press. Watson, J., & Shaughnessy, M. (2004). Proportional Reasoning: lessons from Research in data and chance. Mathematics Teaching in the Middle School, 10(2), 104-109. Recuperado desde https://www.researchgate.net/publication/234667935_Proportional_Reasoning_lessons_ from_Research_in_data_and_chance Zhu, l., & Gigerenzer, G. (2006). children can solve bayesian problems: the role of representation in mental computation. Cognition, 98(3), 287-308. doi: https://doi.org/10.1016/j.cognition. 2004.12.003