Representations in matematics education: an onto-semiotic approach
Tipo de documento
Autores
Lista de autores
Font, Vicenç, Godino, Juan D. y D'Amore, Bruno
Resumen
Research in didactics of mathematics has shown the importance that representations have in teaching and learning processes as well as the complexity of factors related to them. Particularly, one of the central open questions that the use of representations poses is the nature and diversity of objects that carry out the role of representation and of the objects represented. The objective of this article is to show how the notion of semiotic function and mathematics ontology elaborated by the ontosemiotic approach of mathematics knowledge, enables us to face such a problem, by generalizing the notion of representation and by integrating different theoretical notions used to describe mathematics cognition.
Fecha
2010
Tipo de fecha
Estado publicación
Términos clave
Análisis didáctico | Contextos o situaciones | Otro (fundamentos) | Otro (representaciones) | Semiótica
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Volumen
2
Número
1
Rango páginas (artículo)
58-86
ISSN
21765634
Referencias
Bloor, D. (1983). Wittgenstein. A social theory of knowledge. London, UK: The Macmillan Press. Blumer, H. (1969). Symbolic interactionism: Perspective and method. Englewood Cliffs, NJ: Prentice-Hall Cobb, P., Yackel & McClain, K., (Eds.) (2000). Symbolizing and communicatins in mathematics classrooms. London, UK: Lawrence Erlbaum. Contreras, A., Font, V., Luque, L. & Ordóñez, L. (2005). Algunas aplicaciones de la teoría de las funciones semióticas a la didáctica del análisis infinitesimal. Recherches en Didactique des Mathématiques, 25 (2), 151-186. D’Amore, B. (2006). Didáctica de las Matemáticas. Bogotá, Colombia: Magisterio. D’Amore, B. (2005). Secondary school students’ mathematical argumentation and Indian logic (nyaya). For the Learning of Mathematics, 25 (2), 26-32. Duval, R. (2002). Representation, vision and visualization: cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt, (ed.), Representations and Mathematics Visualization (pp. 311-335). North American Chapter of PME: Cinvestav-IPN, México. Eco, U. (1979). Trattato di semiotica generale. Milano, Italy: Bompiani. Ernest, P. (1998). Social constructivism as a philosophy of mathematics. New York, NY: SUNY. Font, V. (2001). Representation in Mathematics Education. Philosophy of Mathematics Education Journal, 14, 1-35. [http://www.ex.ac.uk/~PErnest/pome14/contents.htm] Font, V., Godino, J. D. & D'Amore, B. (2007). An onto-semiotic approach to representations in mathematics education. For the Learning of Mathematics, 27(2), 1-7. Font, V. & Peraire, R. (2001). Objetos, prácticas y ostensivos asociados. El caso de la cisoide. Educación Matemática, 13(2), 55-67. Godino, J. D. (2002). Un enfoque ontológico y semiótico de la cognición matemática. Recherches en Didactique des Mathématiques, 22(2/3), 237-284. Godino, J. D. & Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics Education as a research domain: A search for identity (pp.177-195). Dordrecht: Kluwer, A. P. Godino, J. D., Batanero, C. & Roa, R. (2005). An onto-semiotic analysis of combinatorial problems and the solving processes by university students. Educational Studies in Mathematics, 60(1), 3-36. Goldin, G. (1998). Representations and the psychology of mathematics education: part II. Journal of Mathematical Behaviour, 17(2), 135-165. Goldin, G. (2002). Representation in mathematical learning and problem solving. In L. D. English (ed.), Handbook of International Research in Mathematics Education (pp. 197-218). London, UK: Lawrence Erlbaum. Goldin, G. & Janvier, C. (1998). Representation and the psychology of mathematics education. Journal of Mathematics Behaviour, 17 (1), 1-4. Goldin, G. & Stheingold, N. (2001). System of representations and the development of mathematical concepts. In A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics, 2001 yearbook (pp.1-23). Reston, VA: National Council of teachers of Mathematics. Hitt, F. (2002). Representations and mathematics visualization. North American Chapter of PME: Cinvestav-IPN, Mexico. Hjemslev, L. (1961). Prolegomena to a Theory of Language. Madison, Wisconsin: University of Wisconsin. Janvier, C. (ed.) (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum. Kaput, J. J. (1998). Representations, inscriptions, descriptions and learning: A kaleidoscope of windows. Journal of Mathematical Behaviour, 17(2), 266-281. Radford, L. (1997). On psychology, historical epistemology and the teaching of mathematics: towards a socio-cultural history of mathematics. For the Learning of Mathematics 17(1), 26-33. Radford, L. (2003). On the epistemological limits of language. Mathematical knowledge and social practice in the Renaissance. Educational Studies in Mathematics, 52(2), 123–150. Sfard, A. (2000). Symbolizing mathematical reality into being – or how mathematical discourse and mathematical objects create each other. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and Communicating in Mathematics Classrooms (pp. 38-75). London, UK: Lawrence Erlbaum. Steinbrigng, H. (1997). Epistemological investigation of classroom interaction in elementary mathematics teaching. Educational Studies in Mathematics, 32, 49-92. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en Didactiques des Mathématiques, 10(2/3), 133-170. Wilhelmi, M. R., Godino, J. D. & Lacasta, E. (2005). Didactic effectiveness of equivalent definitions of a mathematical notion. The case of the absolute value. Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (CERME 4). Barcelona, Spain: Universitat Ramon Llull. Wittgenstein, L. (1953). Philosophical investigations. Basil Blackwell, Oxford [1958].