Sesgos en el razonamiento sobre probabilidad condicional e implicaciones para la enseñanza
Tipo de documento
Autores
Lista de autores
Batanero, Carmen, Contreras, José María y Diaz, Carmen
Resumen
En este trabajo analizamos algunos de los sesgos frecuentes en la comprensión de la probabilidad condicional. También presentamos algunos resultados obtenidos en dos estudios de evaluación realizados con estudiantes de Psicología y futuros profesores de matemáticas en España. Finalizamos con algunas reflexiones sobre la enseñanza de la probabilidad.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Organización y representación de datos | Planteamiento de problemas | Probabilidad condicional
Enfoque
Nivel educativo
Educación media, bachillerato, secundaria superior (16 a 18 años) | Educación secundaria básica (12 a 16 años) | Educación técnica, educación vocacional, formación profesional
Idioma
Revisado por pares
Formato del archivo
Referencias
[1] Díaz,C (2007).Viabilidaddelainferenciabayesianaenelanálisisdedatosenpsicología.UniversidaddeGranada:Tesis doctoral. [2] Contreras, J. M. (2011). Evaluación de conocimientos y recursos didácticos en la formación de profesores sobre probabilidad condicional. Tesis Doctoral. Universidad de Granada. [3] Maury, S. (1985). Influence de la question dans una épreuve relative á la notion d’independance. Educational Studies in Mathematics, 16, 283-301. [4] Maury, S. (1986). Contribution à l’étude didactique de quelques notions de probabilité et de combinatoire à travers la résolution de problémes. Tesis doctoral. Universidad de Montpéllier II. [5] Kelly, I. W. y Zwiers, F. W. (1986). Mutually exclusive and independence: Unravelling basic misconceptions in probability theory. Teaching Statistics, 8, 96-100. [6] Sánchez, E. (1996). Dificultades en la comprensión del concepto de eventos independientes. En F. Hitt (Ed.), Investigaciones en Educación Matemática (pp. 389-404). México. [7] Pollatsek, A., Well, A. D., Konold, C. y Hardiman, P. (1987). Understanding Conditional Probabilities. Organita- tion, Behavior and Human Decision Processes. 40, 255 – 269. [8] Falk, R. (1986). Conditional probabilities: insights and difficulties. En R. Davidson y J. Swift (Eds.), Proceedings of the Second International Conference on Teaching Statistics. (pp. 292–297). Victoria, Canada: International Statistical Institute. [9] Gras, R. y Totohasina, A. (1995). Chronologie et causalité, conceptions sources d’obstacles épistémologiques à la notion de probabilité conditionnelle Recherches en Didactique des Mathématiques, 15(1), 49-95. [10] Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems and opportunities. En D. Kahneman, P. Slovic y Tversky (Eds.), Judgement under uncertainty: Heuristics and biases. New York: Cambridge University Press. [11] Batanero,C.,Estepa,A.,Godino,J.yGreen,D.R.(1996).Intuitivestrategiesandpreconceptionsaboutassociation in contingency tables. Journal for Research in Mathematics Education, 27(2), 151–169. [12] Einhorn, H. J. y Hogart, R.M. (1986). Judging probable cause. Psychological Bulletin, 99, 3–19. [13] Ojeda, A. M. (1995). Dificultades del alumnado respecto a la probabilidad condicional. UNO, 5, 37-55. [14] Tversky, A. y Kahneman, D. (1982). Causal schemas in judgment under uncertainty. En D. Kahneman, P. Slovic y A. Tversky (Eds.), Judgement under uncertainty: Heuristics and biases (pp. 117-128). Cambridge, MA: Cambridge University Press. [15] Díaz, C. (2005). Evaluación de la falacia de la conjunción en alumnos universitarios. Suma, 48, 45-50. [16] Lecoutre, M. P. (1992). Cognitive models and problem spaces in purely random situations. Educational Studies in Mathematics, 23, 557-568. [17] Ball, D. L., Lubienski, S. T., y Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. En V. Richardson (Ed.), Handbook of research on teaching (pp. 433-456). Washington, DC: American Educational Research Association. [18] Borovcnik, M. y Peard, R. (1996). Probability. En A. Bishop, et al. (Eds.), International handbook of mathematics education (pp. 239-288). Dordrecht: Kluwer. [19] Aguilar, M., Navarro, J.I., López, J.M. y Alcalde, C. (2002). Pensamiento formal y resolución de problemas matemáticos. Psicothema, 14(2), 382-386.