Task design in APOS Theory
Tipo de documento
Autores
Lista de autores
Trigueros, María y Oktaç, Asuman
Resumen
This paper discusses the role of task design in APOS Theory. The role played by the genetic decomposition in the theory and in task design is discussed. An example of a genetic decomposition for the concepts of inverse matrix transformation and inverse matrix is given. Tasks designed using this tool as a guide are exemplified as well as a description of their relationship to the genetic decomposition. In this way we provide insights about each task and the specific detailed construction it has as its aim. The role of the tasks in the classroom is discussed since the combination of collaborative work of students in sequences of tasks and in group discussions are the foundation of APOS Theory’s potential to promote essential constructions needed for a deep learning of mathematical concepts.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Otra (teorías) | Práctica del profesor | Sistemas de ecuaciones | Tareas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
15
Rango páginas (artículo)
43-55
ISSN
22544313
Referencias
Aguilar, P., & Oktaç, A. (2004). Generación del conflicto cognitivo a través de una actividad de criptografía que involucra operaciones binarias. Revista Latinoamericana de Investigación en Matemática Educativa, 7(2), 117-144. Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS Theory. A framework for research and curriculum development in mathematics education. New York: Springer. Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for Research in Mathematics Education, 31(5), 557-578. Cline, K., Zullo, H., Duncan, J., Stewart, A., & Snipes, M. (2013). Creating discussions with classroom voting in linear algebra. International Journal of Mathematical Education in Science and Technology, 44(8), 1131-1142. Cooley, L., Trigueros, M., & Baker, B. (2007). Schema thematization: A theoretical framework and an example. Journal for Research in Mathematics Education, 38(4), 370-392. Figueroa, A. P., Possani, E., & Trigueros, M, (2018). Matrix multiplication and transformation: An APOS approach. The Journal of Mathematical Behavior. 52, 72-91. Lesh, R., Middleton, J. A., Caylor, E., & Gupta, S. (2008). A science need: Designing tasks to engage students in modeling complex data. Educational Studies in Mathematics, 68(2), 113-130. Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and creative reasoning. ZDM – Mathematics Education, 49(6), 937-949. Martínez- Planell, R., & Trigueros, M. (in press, 2019). Using cycles of research in APOS: The case of functions of two variables. The Journal of Mathematical Behavior. McDonald, M., Mathews, D., & Strobel, K. (2000). Understanding sequences: A tale of two objects. Research in Collegiate Mathematics Education IV. CBMS issues in mathematics education (Vol. 8, pp. 77-102). Providence, RI: American Mathematical Society. Oktaç, A. (2019). Mental constructions in linear algebra. ZDM – Mathematics Education https://doi.org/10.1007/s11858-019-01037-9. Roa-Fuentes, S., & Oktaç, A. (2010). Construcción de una descomposición genética: Análisis teórico del concepto transformación lineal. Revista Latinoamericana de Investigación en Matemática Educativa, 13(1), 89-112. Roa-Fuentes, S., & Oktaç, A. (2012). Validación de una descomposición genética de transformación lineal: Un análisis refinado por la aplicación del ciclo de investigación de APOE. Revista Latinoamericana de Investigación en Matemática Educativa, 15(2), 199- 232. Schwarz, B. B., & Linchevski, L. (2007). The role of task design and argumentation in cognitive development during peer interaction: The case of proportional reasoning. Learning and Instruction, 17(5), 510-531. Sierpinska, A. (2004). Research in mathematics education through a keyhole: Task problematization. For the Learning of Mathematics, 24(2), 7-15. Trgalová, J., Soury-Lavergne, S., & Jahn, A. P. (2011). Quality assessment process for dynamic geometry resources in Intergeo project. ZDM – Mathematics Education, 43(3), 337-351. Trigueros, M. (2018). Learning linear algebra using models and conceptual activities. In S. Stewart, C. Andrews-Larson, A. Berman & M. Zandieh (Eds.), Challenges and strategies in teaching linear algebra (pp. 29-50). New York: Springer. Vázquez Padilla, R. X. (2017). Diseño de actividades didácticas basadas en modelización para la formación matemática de futuros ingenieros (PhD Manuscript). Cicata-IPN, Mexico. Vidakovic, D. (1996). Learning the concept of inverse function. The Journal of Computers in Mathematics and Science Teaching, 15(3) 295-318. Weller, K., Clark, J. M., Dubinsky, E., Loch, S., & Merkovsky, R. (2003). Student performance and attitudes in courses based on APOS Theory and the ACE teaching cycle. Research in Collegiate Mathematics Education V. CBM issues in mathematics. 12, 97-131. Providence, RI: American Mathematical Society. Zaslavsky, O., & Leikin, R. (2004). Professional development of mathematics teacher educators: Growth through practice. Journal of Mathematics Teacher Education, 7(1), 5-32.