Tecnologías y educación matemática: ¿Andarán dos juntos, si no estuvieren de acuerdo?
Tipo de documento
Autores
Lista de autores
Arcavi, A.
Resumen
“¿Andarán dos juntos, si no estuvieren de acuerdo?” es una cita del libro de Amos (3:3), uno de los doce ‘profetas menores’ (así llamados por la extensión de sus libros en el Antiguo Testamento). La metáfora alude a las cosas que no suceden por casualidad, y a que detrás de todo hay motivos. Si dos personas se juntan para andar es porque se encontraron con un propósito y hay entre ellas una cierta relación. Las tecnologías y la educación, dos campos distantes, se encontraron durante las últimas décadas. ¿Cuáles fueron la naturaleza, los propósitos y los desafíos de ese ‘andar’ juntos? Esta presentación es un intento de responder a esta pregunta a partir del advenimiento del ordenador individual y desde mi perspectiva personal, como espectador y, en menor escala, como ‘actor’.
Fecha
2022
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Computadores | Reflexión sobre la enseñanza | Software
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Usuario
Título libro actas
Editores (actas)
Blanco, Teresa F. | Cañadas, María C. | González-Calero, José Antonio | Núñez-García, Cristina
Lista de editores (actas)
Blanco, Teresa F., Núñez-García, Cristina, Cañadas, María C. y González-Calero, José Antonio
Editorial (actas)
Lugar (actas)
Rango páginas (actas)
25-34
ISBN (actas)
Referencias
Arcavi, A. (2020). From tools to resources in the professional development of mathematics teachers: General perspectives and crosscutting issues. En O. Chapman y S. Llinares (Eds.), The International Handbook of Mathematics Teacher Education (2.ª ed., Vol. 2, pp. 421-437). Sense Publishers. Arcavi, A. (2022). Geogebra – Tareas para sorprender. Conferencia plenaria en VII Dia Geogebra Portugal. Arcavi, A. y Hadas, N. (2000). Computer mediated learning: An example of an approach. International Journal of Computers for Mathematics Learning, 5(1), 25-45. https://doi.org/10.1023/A:1009841817245 Ball, D. L., Hill, H. C. y Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 30(3), 14-17, 20-22, 43-46. Bess, M. (2018). Technology isn’t just changing society - it’s changing what it means to be human. https://www.vox.com/technology/2018/2/23/16992816/facebook-twitter-tech-artificial-intelligence-crispr Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S. y Sánchez Aguilar, M. S. (2016). Digital technology in mathematics education: Research over the last decade. En Kaiser, G. (Ed.), Proceedings of the 13th International Congress on Mathematical Education ICME-13 (pp. 221-233). Springer Open. Borko, H., Koellner, K., Jacobs, J. y Seago, N. (2011). Using video representations of teaching in practice based professional development programs. ZDM Mathematics Education, 43(1), 175-187. https://DOI 10.1007/s11858-010-0302-5 Bruner, J. (1964). The course of cognitive growth. American Psychologist, 19(1), 1-15. Calvin, A. (1969). Programmed instruction: Bold new venture. Indiana University Press. Clarke, D. (2000). Time to reflect. Journal of Mathematics Teacher Education, 3(3), 201-203. Cole. M. y Griffin, P. (1980). Cultural amplifiers reconsidered. En D. R. Olson (Ed.) The Social Foundations of Language and Thought: Essays in Honor of Jerome S. Bruner (pp. 343-364). W. W. Norton and Company. Drijvers, P. (2018). Tools and taxonomies, a response to Hoyles. Research in Mathematics Education, 20(3), 229-235. https://doi.org/10.1080/14794802.2018.1522269 Drijvers, P., Thurm, D., Vandervieren, E., Klinger, M., Moons, F., van der Ree, H., Mol, A., Barzel, B. y Doorman, M. (2021). Distance mathematics teaching in Flanders, Germany, and the Netherlands during COVID-19 lockdown. Educational Studies in Mathematics, 108(1-2), 35-64. https://doi.org/10.1007/s10649-021-10094-5 diSessa, A. (2000). Changing Minds: Computers, Learning, and Literacy. MIT Press. Gagné, R. M. (1965). Conditions of Learning. Holt, Rinehart and Winston. Hadas, N., Hershkowitz, R. y Schwarz, B. (2000). The role of contradiction and uncertainty in promoting the need to prove in Dynamic Geometry environments. Educational Studies in Mathematics, 44(1), 127-150. https://doi.org/10.1023/A:1012781005718 Hoyles, C. (2018). Transforming the mathematical practices of learners and teachers through digital technology. Research in Mathematics Education, 20(3), 209-228. https://doi.org/10.1080/14794802 .2018.1484799 Karsenty, R. y Arcavi, A. (2017). Mathematics, lenses and videotapes: a framework and a language for developing reflective practices of teaching. Journal of Mathematics Teacher Education, 20(5), 433- 455. https://DOI 10.1007/s10857-017-9379-x Luckin, R., Holmes, W., Griffiths, M. y Forcier, L.B. (2016). Intelligence Unleashed. An argument for AI in Education. Pearson. https://www.pearson.com/content/dam/corporate/global/pearson-dotcom/files/innovation/Intelligence-Unleashed-Publication.pdf Meserve, B. (1966). Mathematics teachers, on guard! The Mathematics Teacher, 59(6), 522-530. Skinner, B. F. (1974). About Behaviorism. Vintage Books. Oleson, A. y Hora, M.T. (2013). Teaching the way they were taught? Revisiting the sources of teaching knowledge and the role of prior experience in shaping faculty teaching practices. Higher Education, 68(1), 29-45. https:// DOI 10.1007/s10734-013-9678-9 Papert, S. (1980). Mindstorms. Children, Computers and Powerful Ideas. Basic Books. Pea., R. (1987). Cognitive technologies for mathematics education. En Schoenfeld, A. (Ed.), Cognitive science and mathematics education (pp. 89-122). Lawrence Erlbaum Associates, Inc. Ruthven, K. (2022). Ergonomic, epistemological and existential challenges of integrating digital tools into school mathematics. Asian Journal for Mathematics Education, 1(1), 7-18. https:// DOI: 10.1177/27527263221077314 Schwarts, G., Coles, A. y Arcavi, A. (2022). Leading mathematics teacher discussions during professional development: challenges, opportunities, and discussion sense. For the Learning of Mathematics, 42(2). Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. UNESCO (2015). http://uis.unesco.org/sites/default/files/documents/fs39-the-world-needs-almost69-million-new-teachers-to-reach-the-2030-education-goals-2016-en.pdf World Economic Forum (2016). Why robots could replace teachers as soon as 2027. https://www. weforum.org/agenda/2017/12/why-robots-could-replace-teachers-as-soon-as-2027
Proyectos
Cantidad de páginas
10