Um experimento de ensino sobre periodicidade: fatores relevantes para a aprendizagem
Tipo de documento
Autores
Lista de autores
Lobo, Nielce, Figueiredo, Sonner y Llinares, Salvador
Resumen
Neste artigo discutimos um experimento de ensino que versou sobre periodicidade de funções trigonométricas e foi aplicado a dezesseis estudantes do primeiro ano de um curso de licenciatura em matemática. Uma Trajetória Hipotética de Aprendizagem – THA, baseada em Simon e Tzur, foi desenhada contemplando o mecanismo cognitivo centrado na relação atividade-efeito, a partir da ideia de abstração reflexiva, de Piaget. Na pesquisa qualitativa, com elementos do Design Based Research, investigamos como a tarefa matemática promoveu a aprendizagem dos estudantes. Destacamos como os licenciandos utilizaram applets no software GeoGebra e como caracterizaram as funções em estudo e seus respectivos períodos utilizando as linguagens analítica e geométrica. Os resultados indicaram que houve coordenação de registros enquanto os licenciandos modificaram parâmetros das expressões algébricas das funções e os relacionavam com os períodos das mesmas. Identificamos fatores relevantes para a aprendizagem propiciadas pelo experimento de ensino, os quais explicaram a relação entre a aprendizagem conceitual e as tarefas matemáticas propostas na THA. Concluímos que o mecanismo ofereceu uma estrutura para os licenciandos pensarem e avançarem na aprendizagem conceitual.
Fecha
2019
Tipo de fecha
Estado publicación
Términos clave
Constructivismo | Gráfica | Software | Trigonometría | Trigonométricas
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
14
Número
1
Rango páginas (artículo)
1-21
ISSN
19811322
Referencias
Amantes, A., & Borges, O. (2008). Uso da taxonomia SOLO como ferramenta metodológica na pesquisa educacional. In: VI Encontro Nacional De Pesquisa Em Educação Em Ciências. Florianópolis. Anais. Belo Horizonte: FAE\UFMG, 2008. v. Único. p. 1-12. Bass, H., (1998). Research on university-level mathematics education: (Some of) what is needed, and why? Pre-Proceedings of the ICMI Study Conference on the Teaching and Learning of Mathematics at University Level. Biggs, J., & Collis, K. (1982) Evaluating the quality of learning: the SOLO taxonomy. New York: Academic Press. Brasil. (1998). Secretaria de Educação Fundamental. Parâmetros curriculares nacionais: Matemática. Brasília: MEC/SEF. Brasil. (2000). Ministério da Educação. Secretaria de Educação Média e Tecnológica. Parâmetros Curriculares Nacionais: Ensino Médio: Parte III: Ciências da Natureza Matemática e suas Tecnologias, Brasília: MEC/SEM. Brasil. (2006). Orientações Curriculares para o Ensino Médio - Ciências da Natureza, Matemática e suas Tecnologias. Brasília: Ministério da Educação, Secretaria da Educação Básica, v. 2, p 67-98. Brito, A. J., & Morey, B. B. (2004). Trigonometria: dificuldades dos professores de matemática do ensino fundamental. Horizontes, Bragança Paulista, v. 22, n. 1, p. 65-70. Coob, P., Confrey, J., Disessa, A., Lehrer, R. & Schauble, L. (2003). Design experiments in education research. Educational Researcher, v.32, n.1, p. 913. Dreyfus, T., Hillel, J. & Sierpinska, A. (1998). Evaluation of a Teaching Design in Linear Algebra: The Case of Linear Transformations. Paper presented at the first Conference of the European Society for Research in Mathematics Education (CERME–1). http://www.fmd.uniosnabrueck.de/ebook/erme/cerme-1proceedings/papers/g2-dreyfus-et- al.pdf . Acesso em 12/09/2017. Duval, R. (1998) Geometry from a cognitive point of view. En C. Mammana and. Villani (eds.) Perspective on the Teaching of the Geometry for the 21st century (37-51). Dordrecht, Netherland: Kluwer Academic Publishers. Figueiredo, D.G. (1977). Análise de Fourier e equações diferenciais parciais. Rio de Janeiro, Instituto de Matemática Pura e aplicada, CNPQ. Figueiredo, S. A de. (2015). Formação Inicial de Professores e a Integração da Prática Como Componente Curricular na Disciplina de Matemática Elementar. Tese de Doutorado em Educação Matemática. Programa de Pós-Graduação em Educação Matemática da Universidade Anhanguera de São Paulo. Gilsdorf, M. A. (2006). Comparison of rational and classical trigonometry. http://web. maths.unsw.edu.au/~norman/papers/TrigComparison.pdf, March. Lagrange, J.B. & Artigue, M. (2009). Students’ activities about functions at upper secondary level: a grid for designing a digital environment and analysing uses. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, C. (Eds.), Proceedings of 33rd Conference of the International Group for the Psychology of Mathematics Education. Thessaloniki, Greece: PME. Lindegger, L. R. M. (2000). Construindo os conceitos básicos da trigonometria no triângulo, uma proposta a partir da manipulação de modelos. Dissertação (Mestrado Acadêmico em Educação Matemática), Pontifícia Universidade Católica, São Paulo. Lobo da Costa, N. M. (1997). Funções Seno e Cosseno: Uma sequência de ensino a partir dos contextos do "Mundo Experimental" e do Computador. Dissertação (Mestrado Acadêmico em Educação Matemática), Pontifícia Universidade Católica, São Paulo. Lobo da Costa, N. M. (2004) Formação de Professores para o ensino da Matemática com a informática Integrada à prática Pedagógica: exploração e análise de dados em bancos computacionais. Tese (Doutorado em Educação: Currículo). Pontifícia Universidade Católica, São Paulo. Maschietto, M. (2008). Graphic Calculators and Micro-Straightness: Analysis of a Didactic Engineering. International Journal of Computers for Mathematical Learning, 13(3), 207- 230, doi: 10.1007/s10758-008-9141-7. Orfão, R. B. (2012) Professores de Matemática em um Grupo de Estudos: Uma Investigação Sobre o uso de Tecnologia no Ensino de Funções Trigonométricas. Dissertação (Mestrado Acadêmico) – Universidade Bandeirante de São Paulo, Programa de Pós-Graduação em Educação Matemática. Piaget, J. (1977). Studies in Reflecting Abstraction. Sussex: Psychology Press. Sierpinska A. (1992) On understanding the notion of function. In: Dubinsky E., Harel G. (eds.) The concept of Function. (MAA Notes Vol. 25, 25-59). Mathematical Association of America. Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education. Vol. 26, No. 2, 114-145. Simon, M. A., Tzur R. (2004). Explicating the Role of Mathematical Tasks in conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning, 6(2), 91-104. Simon, M. A., Tzur, R., Heinz, K. & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: elaborating the construct of reflective Abstraction. Journal for Research in Mathematics Education, 35(5), 305-329. Soto, E. (2002). Comportamento Organizacional: O impacto das emoções. 1. ed. Pioneira: São Paulo. Wildberger, N. (2005). Divine Proportions: Rational Trigonometry to Universal Geometry. Em http://wildegg.com. 300pp. Thiollent, M. (1994). Metodologia da Pesquisa-Ação nas Organizações. 6ª edição Ed. Cortez. São Paulo. Tzur, R. (1999). An Integrated study of children's construction of improper fractions and the teacher's role in promoting that learning. Journal for Research in Mathematics Education, 30 (4), 390-416.