Using dynamical geometry softwares in the study of plane geometry: potentialities and limitations
Tipo de documento
Lista de autores
Pinho, José Luiz Rosas y Moretti, Méricles Thadeu
Resumen
Background: Some inconsistencies that appeared when teaching Geometry - using Dynamical Geometry Softwares - to Mathematics undergraduate students, inspired this work . Objectives: To stress the potentialities and, specially, the limitations of Dynamical Geometry Softwares in order of using it correctly by teachers, pre-service teachers and students for learning and teaching situations and investigations in Geometry. Design: Critical analysis study of situations, with examples produced using Dynamical Geometry Softwares, in order to reveal some inconsistencies with respect to the theory. In particular, Geogebra was the software used. Setting and participants: Some of the examples presented here, elaborated in GeoGebra, were briefly discussed in classes of pre-service teachers of mathematics aiming at an awareness of the inconsistencies that may appear using a Dynamical Geometry Software. The authors are the unique participants of the elaboration of those examples. Data collection and analysis: There was not data collection, but only elaboration of examples in order to provide some arguments for future discussions. Results: Examples production shows some limitations of Dynamical Geometry Softwares and that those limitations are insurmountable due to epistemological reasons. Conclusions: Awareness of Dynamical Geometry Software limitations is fundamental for its correct use. Those limitations do not invalidate the software potential. On the contrary, being conscious of both potentialities and limitations of a hardware is a necessary condition to a fruitful use of it.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Contextos o situaciones | Geometría vectorial | Gráfica | Software | Unidimensional
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
22
Número
5
Rango páginas (artículo)
25-42
ISSN
21787727
Referencias
Barroso, L. C. et al. (1987). Cálculo numérico (com aplicações) (2ª ed.). São Paulo: Harbra. Bussi, M. G. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: artifacts and signs after a vygotskian perspective. In: M. A. Clements et al (Eds.), Handbook of international research in mathematics education (Chap. 28, pp. 746-783). Routledge. Duval, R. (2012). Abordagem cognitiva de problemas de geometria em termos de congruência (M.T. Moretti, Trad.). Revemat, 7(1), 118-138. Fritz, K. V. (1944). The discovery of incommensurability by Hippasus of Metapontum. Annals of Mathematics, 46(2), 242-264. Gontijo, C. H. (2007). Relações entre Criatividade, Criatividade em Matemática e Motivação em Matemática de Alunos do Ensino Médio (Tese de Doutorado em Psicologia). Universidade de Brasília, Brasília, DF, Brasil. Gontijo, C. H., Carvalho, A. T., Fonseca, M. G., & Farias, M. P. (2019). Criatividade em Matemática – conceitos, metodologias e avaliação. Editora Universidade de Brasília. Gravina, M. A. (2015). O potencial semiótico do GeoGebra na aprendizagem da geometria: uma experiência ilustrativa [Versão Eletrônica], Vidya, 35(2), 237-253. Laborde, C. (2000). Dynamic geometry environments as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151-161. Laborde, C. (2001). Integration of technology in the design of geometry tasks with cabri-geometry. International Journal of Computers for Mathematical Learning, 6, 283–317. Leikin, R. (2015). Problem posing for and through Investigations in a Dynamic Geometry Environment. In: F. M. Singer, F. M., Ellerton & J. Cai, (Eds.) Problem Posing: From Research to Effective Practice (pp. 373-391). Springer. Mariotti, M. A. (2013). Introducing students to geometric theorems: how the teacher can exploit the semiotic potential of a DGS. ZDM Mathematics Education, 45, 441–452. Mariotti, M. A. & Baccaglini-Frank, A. (2010). Generating Conjectures in Dynamic Geometry: The Maintaining Dragging Model. International Journal of Computers for Mathematical Learning, 15(3), 225–253. Pasquali, K. C. (2004). Máximos e Mínimos em Geometria Euclidiana Plana (Trabalho de conclusão de curso). Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil. Silver, E. A. (1997). Fostering Creativity through Instruction Rich in Mathematical Problem Solving and Problem Posing. ZDM – The International Journal on Mathematics Education, 29(3), 75-80. Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematical Educator, 14(1), 19-34. Stormowski, V., Gravina, M. A., & Lima, J. V. (2013). Tecnologia na aula de matemática: a importância do potencial semiótico. Novas Tecnologias na Educação, 11(3), 1-10. Yefimov, N. (1964). A brief course in analytic geometry. Moscou: Peace Publishers.