B.Russell’s “introduction to mathematical philosophy”
Tipo de documento
Autores
Lista de autores
Otte, Michael
Resumen
Bertrand Russell is an important and interesting figure, undoubtedly the most read, honored, and reviled English-speaking philosopher of the twentieth century. And his “Introduction to Mathematical Philosophy” is no less fascinating. Indeed, Russell's above-mentioned work, published in 1918, has sometimes rightly been called “an admirable exposition of che monumental work Principia Mathematica”. The main object of Russell’s book is number, and everything belonging to number, to arithmetic, and to the logic of arithmetic. The foundations of arithmetic always remained the focus of Russell's interest in logic and mathematics, and his views had a profound influence on the reform movement of mathematics education that began around 1960. Since che beginning of the 19" century, mathematics showed a strong tendency towards arithmetization, because space and the continuum seemed beset with seemingly intractable otherness. By the end of the 19‘ century, even number appeared not to be so transparent and so immediately given anymore and the question “what numbers are” arose to explain and co complete the foundations of arithmetic itself by means of logical analysis and set theoretical construction.
Fecha
2001
Tipo de fecha
Estado publicación
Términos clave
Historia de la Educación Matemática | Operaciones aritméticas | Otro (fundamentos) | Otro (números)
Enfoque
Nivel educativo
Idioma
Revisado por pares
Formato del archivo
Referencias
BATESON, G. (1973). Steps to an Ecology of Mind. Paladin, Frogmore UK. BENACERRAF, P. and PUTNAM, H. (eds.) (1983). Philosophy of Mathematics. Cambridge UP BOCHNER, S. (1966). The Role of Mathematics in the Rise of Science. Princeton, Princeton University Press. CARNAR R. (1968). The Logical Structure of the World. London, Routledge & Kegan Paul. CASSIRER, E. (1907). Kant und die moderne Mathematik. Kantstudien Bd. 12. (1962). Leibniz’ System in seinen wissenschaftlichen Grundlagen. Darmstadt, Wissenschaftliche Buchgesellschaft. CASARI, E. (1974). Axiomatical and Set-theoretical Thinking. Synthese 27. DEDEKIND, R. (1969). Was sind und was sollen die Zahlen? Vieweg, Braunschweig. FREGE, G. (1884). Grundlagen der Arithmetik. Breslau. GODEL, K. (1944). “Russell’s Mathematical Logic”. In: SCHILPP, P. A. (hgb.). The Philosophy of Living Philosophers. HACKING, I. (1975). Why does Language Matter to Philosophy. Cambridge University Press. HEIJENOORT, J. (1967). Logic as Calculus and Logic as Language. Synthese, v. 17, pp. 324-330. HEINZMANN, G. (1993). Zwischen Objektkonstruktion und. Strukturanalyse. Vandenoeck Ruprecht, Göttingen. HEYTING, A. (1934). Mathematische Grundlagenforschung, Intuitionismus. Beweistheorie. Heidelberg, Springer Verlag. HILBERT, D. (1964). Hilbertana. Wissenschaftliche Buchgesellschaft, Darmstadt HÖLDER, O. (1899). Anschauung und Denken in der Geometrie. Inauguration Lecture, Leipzig. KORIAKO, D. (1999). Kants Philosophie der Mathematik. Hamburg, Meiner Verlag. KRAJEWSKI, W. (1977). Correspondence Principle and Growth of Science. Dordrecht, D. Reidel Publishing Company. LOVEJOY, A. O. (1964). The Great Chain of Being: A Study of the History of an Idea, (The William James Lectures 1933). Harvard Univ. Pr, Cambridge, Mass. MOULINES, C. U. (1994). “Wer bestimmt was es gibt?” In: Zeitschrift für philosophische Forschung, Bd. 2 (175-196). OTTE, M. (1994). Das Formale, das Soziale und das Subjektive. Frankfurt/ M, Suhrkamp Verlag. POTTER, M. (2000). Reasons Nearest Kin. Oxford University Press. PUTNAM, H. (1967-1975). Mathematics without Foundations in ders. Mathematics, Matter and Method, CUP Cambridge QUINE, W. V. (1960). Word and Object. Cambridge, The Mit Press. RORTY, R. (1979). Philosophy and the Mirror of Nature. Princeton University Press. RUSSELL, B. (1954). The Analysis of Matter. London, Allen & Unwin. (1967). The Autobiography of Bertrand Russell. London, Allen & Unwin. (1970). Introduction to Mathematical Philosophy. London, Allen & Unwin. (1971). Logic and Knowledge: Essays 1901-1950. MARSH, R. C. (ed.). London, Allen & Unwin. (1971a). The ABC of Relativity. London, Allen & Unwin. (1973). Essays in Analysis. LACKEY, D. (ed.), London, Allen & Unwin. (1985). The Philosophy of Logical Atomism. La Salle Open Court Publ. Co. (1997). The Problems of Philosophy. Oxford University Press. SALMON, W. C. (ed.) (1970). Zeno’s paradoxes. Indianapolis, Ind. Bobbs-Merrill. SCHLICK, M. (1979). Allgemeine Erkenntnislehre. Frankfurt/M., Suhrkamp Verlag, 1. Aufl. 1925 STRUBECKER, K. (hgb.) (1972). Geometrie. Wissenschaftliche Buchgesellschaft, Darmstadt WEN, L. (2001). Semantic Paradoxes as Equations. Math. Intelligencer, v. 23, pp. 43-49.