Characteristics of mathematical problems posed by teachers
Tipo de documento
Autores
Lista de autores
Agranionih, Neila Tonin
Resumen
Background: in science, posing problems is considered as important as solving them, however, school has explored little this type of activity. Objective: to examine the features of mathematical problems posed by elementary school teachers, analysing aspects related to the statement of the problems and the types of problems formulated. Design: descriptive, qualitative research. Setting and participants: eighty-seven teachers (45 teaching 1st and 2nd grades, and 42 teaching 3rd, 4th, and 5th grades of elementary school) attending a teacher education course promoted by the municipal secretary of education of Curitiba. Data collection and analysis: the teachers were asked to formulate four problems involving addition, subtraction, multiplication, and division. The types of the quantities involved, the necessary information, the number of steps required for solving the problems, and the types of problems from the theory of conceptual fields were analysed. Results: the problems presented a clear language, sufficient information, required a single operation for their solution, involved discrete quantities, and presented few challenges. The problems of addition and subtraction involved situations of composition and transformation, those of multiplication were of simple proportion, and those of division were of partitive problems. Conclusions: the results suggest that the teachers have a limited conception about the formulation of problems, emphasising the need to promote teacher training courses that develop a greater understanding of the properties of the mathematical concept involved in the problems to be formulated and about resolution procedures to be adopted.
Fecha
2021
Tipo de fecha
Estado publicación
Términos clave
Contextos o situaciones | Desarrollo del profesor | Operaciones aritméticas | Planteamiento de problemas | Tipos de problemas
Enfoque
Nivel educativo
Educación primaria, escuela elemental (6 a 12 años) | Educación secundaria básica (12 a 16 años)
Idioma
Revisado por pares
Formato del archivo
Volumen
23
Número
1
Rango páginas (artículo)
233-264
ISSN
21787727
Referencias
Altoé, R. O & Freitas, R. C. (2019). Formulação de problemas no campo conceitual multiplicativo: uma proposta para o ensino de multiplicação e divisão no eixo de produto de medidas. Revista de Educação Matemática e Tecnológica Iberoamericana – Em Teia, 10(3),1-23. http://dx.doi.org/10.23925/1983-3156.2018v21i2p105129 Elwan, A. & Sultan, R. (2016). Mathematics problem posing skills in supporting problem solving skills of prospective teachers. In: Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education. (pp. 3-10). Szeged. Bonotto, C. (2013). Artifacts as sources for problem-posing activities. Springer: Educational Studies in Mathematics, 83(1), 37–55. https://www.jstor.org/stable/23434195 Brasil. (1997). Parâmetros Curriculares Nacionais terceiro e quarto ciclos do ensino fundamental: introdução aos parâmetros curriculares nacionais. MEC/SEF. http://portal.mec.gov.br/seb/arquivos/pdf/ttransversais.pdf Brasil. (2000). Parâmetros curriculares nacionais: ensino médio. MEC. http://portal.mec.gov.br/seb/arquivos/pdf/blegais.pdf Brasil. (2020). Base Nacional Comum Curricular. 2017. http://basenacionalcomum.mec.gov.br Brasil. (2020). Base Nacional Comum Curricular. Educação é a Base. MEC. http://basenacionalcomum.mec.gov.br/images/BNCC_EI_EF_110518 _versaofinal_site.pdf Brown, S. I. & Walter, M. I. (2005). The art of problem posing. Lawrence Erlbaum. Brown, S. I. & Walter, M. I. (1993). Problem posing: reflections and applications. Lawrence Erlbaum. Chapman, O. (2011). Prospective elementary school teachers' ways of making sense of mathematical problem posing. In: Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education (pp.209-216), Ankara, Turkey. Chica, C. (2001). Por que formular problemas? In: K. Smole, K. & M. Diniz, M. (Orgs.). Ler, escrever e resolver problemas: habilidades básicas para aprender matemática (pp. 151-173). Artmed. Crespo, S. (2003). Learning to pose mathematical problems: exploring changes in preservice teachers´ practices. Springer: Educational Studies in Mathematics, 52, 243-270. https://doi.org/10.1023/A:1024364304664 Cunha, M. J. G. (2015). Elaboração de problemas combinatórios por professores de matemática do ensino médio. Recife: UFPE. 137f. Dissertação (Mestrado em Educação Matemática e Tecnológica) - Universidade Federal de Pernambuco, Recife. Dante, L. R. (2009). Formulação e resolução de problemas de matemática: teoria e prática. Ática. English, L. (1997). The development of fifth-grade children’s problem-posing abilities. Springer: Educational Studies in Mathematics, 34, 183-217. https://doi.org/10.1023/A:1002963618035 Freudenthal, H. (1973). Mathematics as an educational task. Reidel. Gonzales, N. A. (1994). Problem posing: A neglected component in mathematics courses for prospective elementary and middle school teachers. School Science and Mathematics, 94(2), 78-84. https://doi.org/10.1111/j.1949-8594.1994.tb12295.x Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? In: A. H. Schoenfeld (Ed.). Cognitive science and mathematics education (pp. 123-147). Lawrence Erlbaum. Lavy, I & Shriki, A. (2007). Problem posing as a means for developing mathematical knowledge of prospective teachers. In: Proceedings of the 31th Conference of the International Group for the Psychology of Mathematics Education (pp.129-136). Seoul, South Korea. Lautert, S. L., Castro-Filho, J. & Santana, E. R. S. (2017). Ensinando multiplicação e divisão do 1o ao 3o ano. Via Litterarum, Lautert, S. L. & Spinillo, A. G. (2002). As relações entre o desempenho em problemas de divisão e as concepções de crianças sobre a divisão [The Relations Between Performance on Division Problems and Children’s Ideas About Division]. Brasília: Psicologia: Teoria e Pesquisa, 18(3), 237-246. Lee, Y., Capraro, R. M, & Capraro, M. M. (2018). Mathematics Teachers’ Subject Matter Knowledge and Pedagogical Content Knowledge in Problem Posing. International Electronic Journal of Mathematics,13(2), 75-90. https://doi.org/10.12973/iejme/2698 Leung, S. & Silver, E. A. (1997). The role of task format, mathematics knowledge, and creative thinking on the arithmetic problem posing of prospective elementary school teachers. Springer: Mathematics Education Research Journal, 9(1), 5-24. https://doi.org/10.1007/BF03217299 Lowrie, T. (2002). Young children posing problems: the influence of teacher intervention on the type of problems children pose. Mathematics Education Research Journal, 14( 2), 87-98. Magina, S. M. P., Santos, A. & Merlini, V. L. (2014). O raciocínio de estudantes do ensino fundamental na resolução de situações das estruturas multiplicativas [Primary students' reasoning in multiplicative structures problem solving]. Bauru: Ciência e Educação, 20, 517-533. https://doi.org/10.1590/1516- 73132014000200016 Medeiros, K. & Santos, A. J. B. (2007). Uma experiência didática com a formulação de problemas matemáticos. [A Didactic Experience with the Formulation of Mathematical Problems] Zetetiké, 15(28), 87-118. https://doi.org/10.20396/zet.v15i28.8647027 Morais, M. D. & Teles, R. A. M. (2014). Grandezas e medidas no ciclo de alfabetização. Cadernos da TV Escola: Um salto para o futuro. Grandezas e medidas no ciclo de alfabetização. 8, 10-16. https://cdnbi.tvescola.org.br/contents/document/publicationsSeries/16 532008_14_MedidaseGrandezasnociclodaalfabetizacao.pdf Onuchic, L. R. & Allevato, N. S. G. (2004). Novas reflexões sobre o ensinoaprendizagem de matemática através da resolução de problemas. In: Bicudo, M. A. V & Borba, M. C., (Orgs.). Educação matemática: pesquisa em movimento (pp. 213-231). Cortez. Pelczer, I, Singer, F. M. E & Voica, C. (2014). Improving problem posing capacities through inservice teacher training programs: challenges and limits. In: Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (pp.401-408). Vancouver, Canada. Polya, G. (1995). A arte de resolver problemas.Interciência. Ribeiro, M. & Amaral, R. (2015). Early years prospective teachers‟ specialised knowledge on problem posing. In: Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (pp. 81-88).Hobart, Australia. Sengul, S. & Katranci, Y. (2014). Structured problem posing cases of prospective mathematics teachers: experiences and suggestions. International Journal on New Trends in Education and Their Implications, 5(4), 190-204. http://www.ijonte.org/FileUpload/ks63207/File/17..sengul.pdf Silver, E. A. (1994). On mathematical problem posing. For the learning of Mathematics, 14(1), 19–28. http://www.jstor.org/stable/40248099 Singer, F. M., Ellerton, N. F. & Cai, J. (2013). Mathematical problem posing. From research to effective practice. Springer. Singer, F. M., Ellerton, N. F. & Cai, J. (2013). Problem-posing research in mathematics education: new questions and directions. Educational Studies in Mathematics, 83(1), 1-7 https://doi.org/10.1007/s10649013-9478-2 Souza, E. I. R. S. & Magina, S. M. P. (2017). Concepção do Professor do Ensino Fundamental sobre Estruturas Multiplicativas. [The Conception of Elementary School Teachers Concerning Multiplicative Structures] Perspectivas da Educação Matemática, 10(24). 797- 815. https://periodicos.ufms.br/index.php/pedmat/article/view/2930/4163 Spinillo, A. G., Lautert, S., Borba, R. E. S. R., Santos, E. M. & Silva, J. F. G. (2017). Formulação de Problemas Matemáticos de Estrutura Multiplicativa por Professores do Ensino Fundamental. [The Posing of Mathematical Problems Involving Multiplicative Structures by Elementary School Teachers] Rio Claro: Bolema, 31(59) 928-946. Spinillo, A. G. & Magina, S. (2004). Alguns ‘mitos’ sobre a educação matemática e suas consequências para o ensino fundamental. In: R. M. Pavanello (Org.). Matemática nas séries iniciais do ensino fundamental: a pesquisa e a sala de aula (pp. 7-35). Biblioteca do Educador Matemático. Stoyanova, E. & Ellerton, N. F. (1996). A framework for research into students' problem posing in school mathematics. In: P. Clarkson (Ed.). Technology in mathematics education (pp. 518-525). Mathematics Education Research Group of Australasia. Vergnaud, G. (1983). Multiplicative structures. In: R. A. Lesh & M. Landau (Eds.). Acquisition of mathematics: concepts and process (pp.127174). Academic Press. Vergnaud, G. (1990). La théorie des champs conceptuels. Grenoble, Recherches en Didactique des Mathématiques, 10, 133-171. http://www.numdam.org/article/PSMIR_1989___S6_47_0.pdf Vergnaud, G. (2003). A gênese dos campos conceituais. In: E. P. Grossi (Org.). Por que ainda há quem não aprende? A teoria (pp.21-64). Vozes. Vergnaud, G. (2009). A criança, a matemática e a realidade. UFPR. Vergnaud,G. (2017). O que é aprender? Por que Teoria dos Campos Conceituais? E. P. Grossi (Org.). O que é aprender? O Iceberg da Contextualização - Teoria dos Campos Conceituais. GEEMPA. Coleção Teoria dos Campos Conceituais. Vergnaud, G. (2019). Quais questões a teoria dos campos conceituais busca responder? Caminhos da Educação Matemática em Revista/Online, 9(1), 1-24. Zunino, D. L. (1995). A matemática na escola: aqui e agora. Artes Médicas.