Conceptualizaciones de la pendiente en libros de texto de matemáticas
Tipo de documento
Autores
Lista de autores
Dolores, Crisólogo y Ibáñez, Gerardo
Resumen
En este artículo se reportan los resultados de una investigación que tiene por objetivo explorar qué conceptualizaciones de pendiente tienen presencia en los libros de texto de matemáticas del bachillerato y cuáles predominan. Para ello utilizamos el método de Análisis de Contenido, en donde los objetos de análisis se encuentran en la exposición del contenido, ejemplos resueltos y los ejercicios o problemas propuestos en los libros de texto. Como marco referencial utilizamos las once conceptualizaciones de pendiente identificadas por Stump (1999) y Moore-Russo, Conner y Rugg (2011). Nuestros hallazgos indican la presencia de la mayoría de las conceptualizaciones, con predominio de aquellas que se desprenden de la definición analítica de pendiente como coeficiente paramétrico, razón algebraica y concepción trigonométrica y la que se aplica dentro de la misma geometría en la determinación del paralelismo o perpendicularidad entre rectas, como lo es la propiedad determinante. Estas conceptualizaciones, por un lado, inducen a la formación de la idea de que la pendiente tiene sentido sólo en el contexto intramatemático, y por otro lado, privilegian el desarrollo del conocimiento procedimental en detrimento del conocimiento conceptual. La comprensión de la pendiente requiere de la formación de redes internas como producto de conexiones entre conceptualizaciones en el plano intra y extra matemático, además del desarrollo armónico del conocimiento conceptual y el procedimental. Lograr la comprensión de los conceptos es fundamental en la Educación Matemática, sin embargo, nuestros resultados indican que los textos que utilizan los profesores difícilmente pueden contribuir a este logro.
Fecha
2020
Tipo de fecha
Estado publicación
Términos clave
Comprensión | Conceptual-teórico | Funciones | Libros de texto | Otro (tipos estudio)
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
34
Número
67
Rango páginas (artículo)
825-846
ISSN
19804415
Referencias
BARDIN, L. El análisis de contenido. 3. ed. Madrid: Akal, 2002. BARMBY, P.; HARRIES, T.; HIGGINS, S.; SUGGATE, J. The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, Dordrecht, v. 70, n. 3, p. 217–241, 2009. BERRY, J.; NYMAN, M. Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, New York, v. 22, n. 4, p. 479–495, 2003. BIRGIN, O. Investigation of eighth-grade students’ understanding of the slope of the linear function. BROUSSEAU, G. Epistemological obstacles, problems and didactical engineering. In: BALACHEFF, N.; COOPER, M.; SUTHERLAND, R.; WARFIELD, V. (ed.). Theory of Didactical Situations in Mathematics. New York: Kluwer Academic Publishers, 2002. p. 79–117. BUSINSKAS, A. Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections. 2008. Thesis (Doctoral in Philosophy) - Faculty of Education-Simon Fraser University, Burnaby, 2008. CAI, J.; DING, M. On mathematical understanding: perspectives of experienced Chinese mathematics teachers. Journal of Mathematics Teachers Education, Dordrecht, v. 20, n. 1, p. 1–25, 2015. CASEY, A.; NAGLE, C. Students’ use of slope conceptualizations when reasoning about the line of best fit. Educational Studies in Mathematics, Dordrecht, v. 92, n. 2, p.163–177, 2016. CHO, P.; NAGLE, C. (2017). An analysis of students’ mistakes on routine slope tasks. In: GALINDO,E. and NEWTON, J., (ed.). Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Indianapolis: Hoosier Association of Mathematics Teacher Educators, 2017. p. 645–652. CHOY, B.; LEE, M.; MIZZI, A. Textbook signatures: an exploratory study of the notion of gradient in Germany, Singapore and South Korea. In: BESWICK, K.; MUIR, T.; WELLS, J. (ed.) Proceedings of the 39th Conference of the International group for the Psychology of Mathematics Education. Hobart: International Group for the Psychology of Mathematics Education, v. 2, 2015. p. 161–168. CORDERO, F.; CEN, C.; SUÁREZ, L. Los funcionamientos y formas de las gráficas en los libros de texto: una práctica institucional en el bachillerato. Revista Latinoamericana de Investigación en Matemática Educativa, México, D. F., v. 13, n. 2, p. 187–214, 2010. CORDERO, F.; FLORES, R. El uso de las gráficas en el discurso matemático escolar: Un estudio socioepistemológico en el nivel básico a través de los libros de texto. Revista Latinoamericana de Investigación en Matemática Educativa, México, D. F., v. 10, n. 1, p. 7–38, 207. COURTNEY, N.; MARTÍNEZ-PLANELL, R.; MOORE-RUSSO, D. Using APOS theory as aframework for considering slope understanding. Journal of Mathematical Behavior, New York, v. 54, 2019. DENIZ, Ö.; KABAEL, T. 8th Grade students’ construction processes of the concept of slope.Education and Science, Ankara, v. 42, n. 192, p. 139–172, 2017. Disponibleen:http://egitimvebilim.ted.org.tr/index.php/EB/article/view/6996. Acceso en: 19 oct. 2019. DOLE, S.; SHIELD, M. J. The capacity of two Australian eighth-grade textbooks for promoting proportional reasoning. Research in Mathematics Education, London, v. 10, n. 1, p. 19–35, 2008. DOLORES, C.; RIVERA, M. I.; GARCÍA, J. Exploring mathematical connections of pre- university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, London, v. 50, n. 3, p. 369–389, 2019. DOLORES, C.; RIVERA, M. I.; MOORE-RUSSO, D. Conceptualizations of slope in Mexican intended curriculum. School Science and Mathematics, Hoboken, v. 120, n. 2, p. 104–115, 2020 FAN, L.; ZHU, Y.; MIAO, Z. Textbook research in mathematics education: development status and directions. ZDM, Hamburg, v. 45, n. 5, p. 633–646, 2013. FLODEN, R. The measurement of opportunity to learn. In: PORTER, A.; GAMORAN, A. (ed.). Methodological advances in cross-national surveys of educational achievement. Washington: National Academy Press, 2002. p. 231–266. FONT, V.; PLANAS, N.; GODINO, J. Modelo para el análisis didáctico en educación matemática.Infancia y aprendizaje, Madrid, v. 33, n. 1, p. 89–105, 2010. FUENLABRADA, S.; FUENLABRADA, I. R. Geometría Analítica. 4. ed., México, D. F., Mc Graw Hill Education, 2014. GEHRKE, N. J.; KNAPP, M. S.; SIROTNIK, K. A. In search of the school curriculum. Review of Research in Education, Washington, v. 18, n. 1, p. 51–110, 1992. MÉXICO. SEP. Acuerdo número 444 por el que se establecen las competencias que constituyen el marco curricular común del Sistema Nacional de Bachillerato. Diario Oficial, 2008. Disponible en: http://www.sems.gob.mx/es_mx/sems/acuerdo_secretarial. Acceso en: 10 sep. 2019. GONZÁLEZ, M.; SIERRA, M. Metodología de análisis de libros de texto de matemáticas: Los puntos críticos en la enseñanza secundaria en España durante el siglo XX. Enseñanza de las Ciencias, Barcelona, v. 22, n. 3, p. 389–408, 2004. HERBEL-EISENMANN, B. A. From intended curriculum to written curriculum: Examining the “voice” of a mathematics textbook. Journal for Research in Mathematics Education, Reston, v. 38, n. 4, p. 344–369, 2007. HIEBERT, J.; CARPENTER, T. P. Learning and teaching with understanding. In: GROUWS, D. (ed.). Handbook of research on mathematics teaching and learning. New York: McMillan, 1992. p. 65–97. HIEBERT, J; LEFEVRE, P. Conceptual and procedural knowledge in mathematics: an introductory analysis. In: HIEBERT, J. (ed.). Conceptual and procedural knowledge: the case of mathematics. Hillsdale: Lawrence Erlbaum Associates, 1986. p. 1–27. HOFFMAN, W. Concept image of slope: Understanding middle school mathematics teachers' perspective through task-based interviews. 2015. Thesis (Doctoral of Philosophy in Curriculum and Instruction) – Faculty of Education, University of North Carolina, Charlotte, 2015. HONG, D. S.; CHOI, M. K. A comparative analysis of linear functions in Korean and American standards-based secondary textbooks. International Journal of Mathematical Education in Science and Technology, London, v. 49, n. 7, p. 1025–1051, 2018. LEHMANN, C. H. Geometría Analítica. México, D. F.: Limusa, 1980. LINGEFJÄRD, T.; FARAHANI, D. The Elusive Slope. International Journal of Science and Mathematics Education, Kaohsiung, v.16, n. 6, p.1187–1206, 2018. LOBATO, J.; SIEBERT, D. Quantitative reasoning in a reconceived view of transfer. The Journal of Mathematical Behavior, New York, v. 21, n. 1, p. 87–116, 2002. LOBATO, J.; THANHEISER, E. Developing understanding of ratio-as-measure as a foundation of slope. In: LITWILLER, B.; BRIGHT, G. (ed.). Making sense of fractions, ratios, and proportions. Reston: The National Council of Teachers of Mathematics, 2002. p. 162–175. MANOUCHEHRI, A.; GOODMAN, T. Mathematics curriculum Reform and teachers: Understanding the connections. The Journal of Educational Research, Philadelphia, v. 92, n. 1, p. 27–41, 1998. MÉNDEZ, A. Matemáticas III. 2. ed. México D. F.: Editorial Santillana S. A. de C. V, 2013. MOORE-RUSSO, D.; CONNER, A.; RUGG, K. Can slope be negative in 3-space? Studying concept image of slope through collective definition construction. Educational Studies in Mathematics, Dordrecht, v. 76, n. 1, p. 3–1, 2011. NCTM. Priniples and Standards for School Mathematics. Reston: NCTM. 2000. NAGLE, C.; CASEY, S.; MOORE‐RUSSO, D. Slope and line of best fit: A transfer of knowledge case study. School Science and Mathematics, Hoboken, v. 117, n. 1–2, p. 13–26, 2017. NAGLE, C.; MOORE-RUSSO, D. Connecting Slope, Steepness, and Angles. Mathematics Teacher, Reston, v. 107, n. 4, p. 272–279, 2013a. NAGLE, C.; MOORE-RUSSO, D. Slope: a network of connected components. In: MARTINEZ, M.; CASTRO, A. (ed.). Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Chicago: University of Illinois at Chicago, 2013b. p. 127135. NAGLE, C.; MOORE-RUSSO, D. The concept of slope: Comparing teachers’ concept images and instructional content. Investigations in Mathematics Learning, Philadelphia, v. 6, n. 2, p. 1–18, 2013c. NAGLE, C.; MOORE–RUSSO, D.; STYERS, J. L. Teachers' Interpretations of Student Statements about Slope. In: GALINDO, E.; NEWTON, J. (ed.). Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Indianapolis: Hoosier Association of Mathematics Teacher Educators, 2017. p. 589–596. NAGLE, C.; MOORE-RUSSO, D.; VIGLIETTI, J.; MARTIN, K. Calculus students’ and instructors’ conceptualizations of slope: a comparison across academic levels. International Journal of Science and Mathematics Education Dordrecht, v. 11, n. 6, p. 1491–1515, 2013. NOSS, R.; HEALY, L.; HOYLES, C. The construction of mathematical meanings: Connecting the visual with the symbolic. Educational Studies in Mathematics, Dordrecht, v. 33, n. 2, p. 203–233, 1997. OHLSSON, S. Mathematical meaning and applicational meaning in the semantics of fractions and related concepts. In: HIERBERT, J.; BEHR, M. (ed.). Number Concepts and Operations in the Middle Grades. Reston: NCTM, 1988. p. 53–92. PLANINIC, M.; MILIN-SIPUS, Z.; KATIC, H.; SUSAC, A.; IVANJEK, L. Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, Dordrecht, v.10, n. 6, p. 1393–1414, 2012. REMILLARD, J. Examining key concepts in research on teachers' use of mathematics curricula. Review of Educational Research, Washington, v. 75, n. 2, p. 211–246, 2005. REMILLARD, J.; HECK, D. Conceptualizing the curriculum enactment process in mathematics education. ZDM, Hamburg, v. 46, n. 5, p. 705–718, 2014. RITTLE-JOHNSON, B.; SCHNEIDER, M. Developing conceptual and procedural knowledge of mathematics. In: COHEN, R.; DOWKER A. (ed.). Oxford handbook of numerical cognition. Oxford: Oxford University Press, 2015. p. 1118–1134. RIVERA, M. I; SALGADO, G.; DOLORES, C. Explorando las conceptualizaciones de la pendiente en estudiantes universitarios. Bolema, Rio Claro, vol. 33, n.65, pp.1027–1046, 2019. SALAZAR, P. Matemáticas 3. México. D. F.: Compañía Editorial Nueva Imagen, 2018. SALGADO, G; RIVERA, M. I; DOLORES, C. Conceptualizaciones de pendiente: contenido que enseñan los profesores de bachillerato. UNIÓN, Revista Iberoamericana de Educación Matemática, São Paulo, v. 15, n. 57, p. 41–56, 2019. SCHMIDT, W.; MCKNIGHT, C.; VALVERDE, G.; HSINGCHI, W.; WILEY, D.; COGAN, L.;WOLFE, R. Why schools matter: A cross-national comparison of curriculum and learning. San Francisco: Jossey-Bass Education, 2001. SHULMAN, L. S. Those who understand: Knowledge growth in teaching. Educational Researcher, Washington, v.15, n. 2, p. 4–14, 1986. SECKEL, M.; BREDA, A.; FONT, V. Los criterios de idoneidad didáctica en la formación de profesores. En: GARCÍA, D. J; PÉREZ, I. E.; (ed.). Acta Latinoamericana de Matemática Educativa. México, D. F.: Comité Latinoamericano de Matemática Educativa, 2019. p. 440–447. SIERPINSKA, A. Obstacles épistémologiques relatifs à la notion de limite. Recherches en didactique des mathématiques, París, v. 6, n. 1, p. 5–67, 1985. STACEY, K.; VINCENT, J. Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational Studies in Mathematics, Dordrecht, v. 72, n. 3, p. 271–288, 2009. STANTON, M.; MOORE-RUSSO, D. Conceptualizations of Slope: A Review of State Standards. School Science and Mathematics, Hoboken, v. 112, n. 5, p. 270–277, 2012. STEWART, J. Cálculo de una variable, Trascendentes tempranas. México, D. F.: Cengage Learning, 2012. STUMP, S. High school precalculus students’ understanding of slope as measure. School Science and Mathematics, Hoboken, v. 101, n. 2, p. 81–89, 2001. STUMP, S. Secondary mathematics teachers’ knowledge of slope. Mathematics Education Research Journal, Sydney, v. 11, n. 2, p. 124–144, 1999. TALL, D.; VINNER, S. Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, Dordrecht, v. 12, n. 2, p. 151–169, 1981. TEUSCHER, D.; REYS, R. Slope, rate of change, and Steepness: Do students understand the concepts? Mathematics Teacher, Reston, v. 103, n. 7, p. 519–524, 2010. TEUSCHER, D.; REYS, R. Rate of Change: AP Calculus Students‟ Understandings and Misconceptions after Completing Different Curricular Paths. School Science and Mathematics, Hoboken, v. 112, n. 6, p. 359–376, 2012. THOMPSON, P. W. A theoretical model of quantity-based reasoning in arithmetic and algebra Center for Research in Mathematics & Science Education: San Diego State University.Disponible en: http://pat-thompson.net/PDFversions/1990TheoryQuant.pdf. Acceso en: 8 sep 2019. THOMPSON, P.; CARLSON, M. Variation, Covariation, and Functions: Foundational Ways of Thinking Mathematically. In: CAI, J. (ed.). Compendium for Research in Mathematics Education. Reston: NCTM, 2017. p. 421–456. THOMPSON, P. W.; THOMPSON, A. G. Images of rate. Center for Research in Mathematics and Science Education and Department of Mathematical Sciences. San Diego State University, 15 de abril de 1992. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644.9932&rep=rep1&type=pdf. Acceso en: 13 oct 2019. VALVERDE, G.; BIANCHI, L.; WOLFE, R.; SCHMIDT, W.; HOUANG, R. According to thebook: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht: Kluwer Academic Publishers, 2002. VAN STEENBRUGGE, H.; VALCKE, M.; DESOETE, A. Teachers’ views of mathematics textbook series in Flanders: Does it (not) matter which mathematics textbook series schools choose? Journal of Curriculum Studies, London, v. 45, n. 3, p. 322–353, 2013. VERGNAUD, G. Multiplicative structures. In: LESH, R.; LANDAU, M. (ed.). Acquisition of mathematics concepts and processes. New York: Academic Press, 1983. p. 127–174. WEBER, E.; TALLMAN, M.; MIDDLETON, J. Developing elementary teachers’ knowledge about functions and rate of change through modeling. Mathematical Thinking and Learning, London, v. 17, n. 1, p. 1–33, 2015.