Definição de probabilidade e probabilidade condicional: um estudo com futuros professores
Tipo de documento
Lista de autores
Batanero, Carmen, Contreras, José Miguel, Díaz, Carmen y Cañadas, Gustavo
Resumen
A finalidade deste estudo é avaliar a competência de futuros professores espanhóis do ensino secundário e do bacharelato para definir, de forma adequada, a probabilidade simples e condicional. As definições obtidas em uma amostra de 196 professores são analisadas classificando-as em função da sua correção e precisão. Os resultados são comparados entre dois grupos de professores de acordo com a formação e também com dados obtidos com estudantes de psicologia.
Fecha
2013
Tipo de fecha
Estado publicación
Términos clave
Competencias | Desde disciplinas académicas | Evaluación (nociones) | Probabilidad
Enfoque
Idioma
Revisado por pares
Formato del archivo
Volumen
8
Número
1
Rango páginas (artículo)
75-91
ISSN
19811322
Referencias
AZCÁRATE, P. El conocimiento profesional de los profesores sobre las nociones de aleatoriedad y probabilidad, 1995. Tesis (Doctorado en Educación) – Departamento de Didáctica, Universidad de Cádiz, Cádiz, 1995. BALL, D. L.; LUBIENSKI, S. T.; MEWBORN, D. S. Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. En: RICHARDSON, V. Handbook of Research on Teaching. Washington, DC: American Educational Research Association, p. 433-456, 2001. BATANERO, C.; CAÑIZARES, M. J.; GODINO, J. D. Simulation as a tool to train Pre- service school teachers. African regional conference of ICMI, 1th, 2005, Ciudad del Cabo. Proceedings... Ciudad del Cabo: ICMI, 2005. CD-ROM. BEGG, A.; EDWARDS, R. Teachers’ ideas about teaching statistics. Annual Meeting of the Australian Association for Research in Education and the New Zealand Association for Research in Education. Melbourne, Australia, 1999. CALVO, C. Un estudio sobre el papel de las definiciones y las demostraciones en cursos universitarios de cálculo diferencial e integral, 2001. Tesis (Doctorado en Didáctica de las Matemáticas) – Departamento de Didáctica de las Ciencias y las Matemáticas, Universidad Autónoma de Barcelona, Barcelona, 2001. CARTER, T. A. Preservice teacher knowledge and understanding of probability and statistics. En: KULM, G. Teacher knowledge and practice in middle grades mathematics. Rotterdam: Sense Publishers, p. 19-43, 2008. CHERNOFF, E. Subjective probabilities derived from the perceived randomness of sequences of outcomes, 2009, 119 p. Tesis (Doctor of Philosophy) – Faculty of Education, Simon Fraser University, 2009. COUTINHO, S.; QUEIROZ, C.; Conceitos probabilísticos: quais contextos a história nos aponta? REVEMAT, v. 2, n. 1, p. 50-67, UFSC: 2007. DÍAZ, C. Viabilidad de la enseñanza de la inferencia bayesiana en el análisis de datos en psicología, 2007. Tesis (Doctorado en Metodología de las Ciencias del Comportamiento) – Departamento de Psicología, Universidad de Granada, Granada, 2007. EINHORN, H. J.; HOGART, R. M. Judging probable cause. Psychological Bulletin. v. 99, p. 3-19, 1986. ESTRADA, A.; DÍAZ, A. Errores en el cálculo de probabilidades en tablas de doble entrada en profesores en formación. UNO, n. 44, p. 48-58. 2007. FALK, R. Conditional probabilities: insights and difficulties. En: DAVIDSON, R.; SWIFT, J. (Eds.), Proceedings of the Second International Conference on Teaching Statistics. Victoria, Canada: International Statistical Institute, p. 292-297, 1986. FERNANDES, J. A.; BARROS, P. M. Dificuldades de futuros professores do 1º e 2º ciclos emestocástica. V Congresso Ibero-Americano de Educação Matemática (CIBEM), Proceedings,... Porto: Faculdade de Ciências [CD-Rom], 2005. FRANKLIN, C.; MEWBORN, D. The statistical education of PreK-12 teachers: A shared responsibility. En: BURRILL, G. (Ed.), NCTM 2006 Yearbook: Thinking and reasoning with data and chance. Reston, VA: NCTM, p. 335-344, 2006. GRAS, R.; TOTOHASINA, A. Chronologie et causalité, conceptions sources d’obstacles épistémologiques à la notion de probabilité conditionnelle. Recherches en Didactique des Mathématiques, v. 15, n. 1, p. 49-95, 1995. HILL, H. C.; BALL, D. L.; SCHILLING, S. G. Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers' topic-specific knowledge of students. Journal for Research in Mathematics Education, Virginia, v. 39, n. 4, p. 372-400, 2008. LEIKIN, R.; WINICKY-LANDMAN, G. Defining as a vehicle for professional development of secondary school mathematics teachers. Mathematics Teacher Education and Development, 3, p. 62-73, 2001. MA, L. P. Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum, 1999. MARIOTTI M. A.; FISCHBEIN, E. Defining in classroom activities. Educational Studies in Mathematics, v. 34, p. 219-248, 1997. MINISTERIO DE EDUCACIÓN DE ESPAÑA-MEC. Real Decreto 1631/2006, de 29 de diciembre, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria. Madrid: Boletín Oficial del Estado, n. 5, 2007a. MINISTERIO DE EDUCACIÓN DE ESPAÑA-MEC. Real Decreto 1467/2007, de 2 de noviembre, por el que se establecen la estructura del bachillerato y se fijan sus enseñanzas mínimas. Madrid: Boletín Oficial del Estado, n. 266, 2007b. POLLATSEK, A.; WELL, A. D.; KONOLD, C.; HARDIMAN, P. Understanding conditional probabilities. Organitation, Behavior and Human Decision Processes, v. 40, p. 255–269, 1987. SERRADÓ, A.; AZCÁRATE, P.; CARDEÑOSO, J. M. Analyzing teacher resistance to teaching probability in compulsory education. En: ROSSMAN, A.; CHANCE, B. (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Salvador, Bahia, Brazil: International Statistical Institute e International Association for Statistical Education. Online: . SILVA, C. B.; COUTINHO, C. Q. S. Reasoning about variation of a univariate distribution: a study with secondary mathematics teachers. In: Joint ICMI/IASE Study: Teaching Statistics in School Mathematics. Challenges for Teaching and Teacher Education. ICMI study 18 and 2008 iase round table conference, 18th y 4th, 2008, Monterrey. Proceedings… Monterrey: ICMI e IASE, [CD-Rom], 2008. TVERSKY, A.; KAHNEMAN, D. Causal schemas in judgment under uncertainty. En: KAHNEMAN, D.; SLOVIC, P.; TVERSKY, A. (Eds.), Judgement under uncertainty: Heuristics and biases. Cambridge, MA: Cambridge University Press, p. 117-128, 1982. VINNER, S. The role of definitions in the teaching and learning of mathematics. En: TALL, D. O. (Ed.), Advanced mathematical thinking. Dordrecht: Kluwer, p. 65–81, 1991. ZAZKIS, R.; LEIKIN, R. Exemplifying definitions: a case of a square. Educational Studies in Mathematics, v. 69, p. 131-148. 2008.